
Exploiting Group Communication for Reliable High Volume Data Distribution

Jeremy R. Cooperstock
Department of Electrical & Computer Engineering

University of Toronto

Toronto, Ontario M5S 1A4

afdp@ecf.toronto.edu

Steve Kotsopoulos
Engineering Computing Facility

University of Toronto

Toronto, Ontario M5S 1A4

afdp@ecf.toronto.edu

Abstract - The design and implementation of a protocol to
provide reliable and efficient distribution of large quantities
of data to many hosts on a local area network or internetwork
is described. By exploiting the one-to-many transmission
capabilities of multicast and broadcast, it is possible to
transmit data to multiple hosts simultaneously, using less
bandwidth and thus obtaining greater efficiency than
repeated unicasting. Although performance measurements
indicate the superiority of multicast, we dynamically select
fr om available transmission modes so as to maximize
efficiency and throughput while providing reliable delivery of
data to all hosts. Our results demonstrate that file-
distribution pr ograms based on this protocol can benefit from
a linear speed-up over TCP-based programs such as rdist.

I. INTRODUCTION

In large workstation clusters, performing frequent file
updates is often an expensive task. The update process can
be automated with programs such asrdist or track , but
their use of connection-oriented protocols such as TCP [9]
can be very inefficient. This is because the data must be
transmitted over the network multiple times, once to each
target.

By exploiting the one-to-many capabilities of modern local
area networks, it is possible for a system to send data to
multiple hosts simultaneously, thereby greatly reducing
network traffic, host load, and elapsed time. Since
broadcast and multicast packets can be sent only as
datagrams, it is necessary to forgo connection-oriented
protocols and instead implement the system using
connectionless protocols such as UDP [8]. We have
designed and implemented such a system, called the
Adaptive File Distribution Protocol (AFDP).

AFDP shares some ideas of CFDP [6], NETBLT [3] and
Armstrong’s multicast transport protocol [1], but
generalizes them to provide a scalable, flow-controlled
data distribution mechanism that capitalizes on available
communication modes.

II. II. THE AFDP PROTOCOL

AFDP is intended for distributing large quantities of data
to a group of machines, rapidly and reliably. This protocol
is based on the publishing model [10], coupled with an
adaptive flow control mechanism for efficiency. Any
machine receiving data is called asubscriber while any
machine sending data is called apublisher. One special
subscriber is designated as thesecretary; this machine is
responsible for managing group membership, authorizing
publishers, and determining the appropriate transmission
mode to be used. Publishing does not require explicit
acknowledgments of received data. Instead, subscribers
use negative acknowledgments as a means of requesting
retransmission of missing or corrupted packets. To
provide adaptive flow control, the transmission rate is
increased while subscribers are receiving packets
correctly. If any packets are dropped or incorrectly
received, the necessary data is retransmitted, and the rate
is decreased.

AFDP was developed as a protocol that would
automatically determine thebest transport mode,
according to the number of subscribers, their capabilities,
and support from the connecting networks. The protocol is
implemented in two co-operating programs, similar in
function torcp, but capitalizing on the broadcast [7] and
multicast [5] facilities of UDP. With its additional tuning
features, AFDP allows the user control over the trade-off
between speed (throughput) and host and network loading.

The interaction between subscribers, publishers, and
secretary is depicted in Figure1. Subscribers wishing to
receive messages may join the group at any time by
contacting the secretary. The identity of the secretary is
either specified on the command line or found by
broadcasting or multicasting a FIND_SECRETARY query
to a well-known search port. If a secretary for this group
exists, it will reply, providing the identity of other ports
required for communication with subscribers and
publishers. Otherwise, if no secretary replies, the

Secretary

Subscriber

Publisher

1

2

3

4

5

JOIN

LEAVE

FIND_SECRETARY

RESEND_REQUEST

MSG_SEND

MSG_RESEND

PUBLISH_REQUEST

PUBLISH_PERSMISSION

PUBLISH_COMPLETE

or

or

or

or

UDP

TCP

Protocols:

subscriber may become the group secretary, thereby
creating a new group. The secretary may disband the group
at any time by sending a SHUTDOWN message to each
subscriber.

The secretary maintains information about the group in the
form of a host table. It listens on three ports for messages;
a search port for FIND_SECRETARY queries, an admin
port for JOIN and LEAVE requests from subscribers, and a
publish port for PUBLISH_REQUEST messages from
publishers.

When a publisher wishes to transmit a message, it first
sends a PUBLISH_REQUEST to the secretary, who in turn
will either refuse the request1 or grant permission. When a
host is granted publishing permission, it is told which
transmission mode to use, as well as an initial suggested
inter-packet interval, Tp. If unicast will be employed, the

1. The secretary will only refuse a PUBLISH_REQUEST if the number
of active publishers exceeds some threshold. We are presently adding
features to prevent all but a select number of hosts from publishing.

secretary also provides the publisher with a current list of
subscribers.

The secretary, in consultation with the publisher, is
responsible for selecting a transmission mode that is
appropriate for all subscribers. Since multicast is
considerably more efficient than broadcast, this mode is
chosen whenever all hosts support it. However, if some
hosts do not support multicast, the secretary must choose
between unicast and broadcast. Broadcast packets cannot
travel beyond a LAN, so this option is only viable when
all subscribers are on the same LAN as the publisher. If so,
the secretary will specify unicast when the number of
subscribers is below some threshold, and broadcast,
otherwise. Note that when the group consists of two or
more subscribers, unicast mode will require multiple
transmissions of each packet. The threshold at which
AFDP switches from unicast to broadcast mode can be
controlled by the user, allowing one to influence the trade-
off between network loading and CPU usage.

Once granted permission, the publisher transmits the
message as a sequence of data packets at intervals of Tp
milliseconds. Each packet contains the current sequence

Figure 1. Interprocess communication in AFDP. The ports are defined as follows: 1. search port. 2. admin port. 3. publish port. 4. group data port. 5.
control port. Note that a group may consist of multiple subscribers and publishers, although for simplicity, we only show one of each.

number, as well as the total number of packets in the
message. Under the negative acknowledgment scheme,
subscribers are silent unless they require the publisher to
resend one or more packets. Subscribers perform a
sequence check function at intervals of a fixed wait time,
Tw, to determine if any packets are outstanding. This will be
true if there is a gap in received sequence numbers2, or if no
packets have arrived since the last sequence check. If any
packets are outstanding, the subscriber connects to the
control port of the publisher via TCP, and issues a
RESEND_REQUEST. Provided that the request is valid3,
the publisher first increases the value of Tp, then services
the retransmission request before returning to normal
publishing. The more RESEND_REQUESTS serviced, the
more the publisher must slow down.

This rate-based flow control mechanism minimizes
unnecessary retransmissions. As soon as one subscriber
reports that it has missed a number of packets, the publisher
is forced to decrease its transmission rate, thus relieving
pressure on the network or the subscriber, whichever is
suffering from overload. While this technique reduces
publisher throughput, it keeps the number of
retransmissions reasonably low.

Similar to VMTP [2], the publisher periodically decreases
the value of Tp to ensure that it is transmitting at the
maximum rate the subscribers can handle. In order to
prevent AFDP from overloading the network, we typically
enforce a reasonable minimum on Tp. However, a rabid
mode that can be used to override this minimum, as well as
a nice mode that raises this minimum to 100 msec, are both
provided. Note that we provide very little fault tolerance. If
a network partition arises, or a subscriber host fails, we
make no attempt to recover from the error.

III. PERFORMANCE

An ideal solution to the problem of efficient file update in
large workstation clusters would be to utilize AFDP as the
transport layer protocol of existing file update programs
such astrack or rdist . This merge may be carried out as
part of a planned rewrite ofrdist [4]. In the meantime, we
developed our ownrdist -like program, afdpdist, as a
proof-of-concept. This program can distribute files to a
group of machines in time independent of group size,

2. Note that a packet is only considered successfully received if its data
was not corrupted.

3. A RESEND_REQUEST is valid if the subscriber is an authorized group
member and the packets it has requested have already been sent to the
group.

provided that subscribers are reasonably well-behaved and
do not flood the network with retransmission requests. In
our experience, retransmission requests have not been a
problem, even for a group size of over 30 hosts.

Figure2 compares the performance ofafdpdist with
various other file update programs. For each program, we
distributed a directory containing 7.0 Mbytes of files of
various sizes to subscriber hosts. The measurements were
made on the University of Toronto’s Engineering
Computing Facility (ECF), a heterogeneous workstation
cluster consisting of one MIPS RC6280, eleven SGIs,
ranging from R3000 Indigos to R4400 multiprocessors,
and 30 SUN Sparc10 systems. The machines are on a
lightly-loaded Ethernet, connected to several other LANs.
Similar results were obtained on various other clusters.

As can be seen,afdpdist offers a linear speedup,
proportional to the number of subscribers, over any TCP-
based file distribution program. For a large number of
hosts,afdpdist distributes files far more efficiently than
presently available programs such asrdist and track .
While beta testing, John DiMarco
<jdd@cdf.toronto.edu> reported:

‘‘AFDP performance was impressive. Sending
/etc/passwd to 68 machines took twenty seconds.
The equivalentrdist4 took 251 seconds.’’

While high throughput is attractive, it is important that
AFDP does not impact other uses of the network. To test
this, ftp transfer times between a MIPS 6280 and a Sparc
10 were compared on the same network under the

4. John DiMarco is making use of the recent enhancements tordist ,
provided by Cooper, which perform multiple TCP transfers in parallel.

number of subscribers

transfer
time

(seconds)

track

rdist

rcp

afdp - broadcast mode

afdp - multicast mode

Figure 2. File distribution time vs. number of subscribers for various
file-update programs. In each case, the entire contents of a 7.0 Mbytes
directory were transferred to each host. The afdp-multicast plot stops at
10 subscribers since only 11 multicast-capable hosts were available. We
did not consider the publisher to be a valid subscriber for these tests.

following four conditions: relatively idle, with a large rcp
transfer running, with a large AFDP transfer running in
broadcast mode, and finally, with a large AFDP transfer
running in unicast mode to three subscribers. The results of
Table1 indicate that the worstftp performance was
obtained whilercp was in use. Sincerdist and track also
use TCP, their performance impact would be similar. In
contrast, AFDP puts less of an impact on other users of the
network than currently popular methods.

Results from our initial experiments using AFDP across
multiple networks appear in Figure3. The graph
demonstrates that even in the worst case, when the
publisher must unicast to all subscribers, the performance is
still approximately linear in group size.

IV. CONCLUSIONS

The group communication capabilities of multicast and
broadcast offer an appealing alternative to repeated
unicasting of data to many machines. To achieve reliability
and efficiency, a retransmission scheme and rate-based flow

Table 1. ftp throughput and network load under various conditions.
The AFDP transfer was to three subscribers in both broadcastand
unicast tests.

network
ftp throughput

(Kbytes/s)
total network

load (%)

idle 470 44

rcp 150 80

AFDP (broadcast) 430 50

AFP (unicast) 200 50

number of subscribers

transfer
time

(seconds)

Figure 3. File distribution time vs. number of subscribers for AFDP
running in internet mode. All subscribers were located on remote
networks from the publisher, and had to receive by unicast mode. In each
case, the transferred file was 1.7 Mbytes.

control mechanism must be added. AFDP provides these
features, allowing large amounts of data to be distributed
quickly to multiple hosts on a LAN. Changes in available
network bandwidth as well as subscriber capabilities are
dynamically accommodated.

Our initial implementation ofafdpdist demonstrates the
potential of file distribution that is independent of the
number of participating hosts. Even for relatively small
clusters, the improved performance ofafdpdist overrdist
or track is significant. Other applications making use of
AFDP may benefit similarly.

 AVAILABILITY

The source code for AFDP is now available via
anonymous ftp fromftp.ecf.toronto.edu:/pub/afdp/ as
public domain software for research and educational
purposes only. Companies or institutions wishing to make
use of AFDP for commercial purposes should contact
afdp@ecf.toronto.edu. AFDP has been tested under
IRIX, SunOS, Solaris, RISC/os, Ultrix, and SVR4.2. Our
sources include a library of convenience functions for
writing network applications, which can be re-used in
other programs.

 REFERENCES

1. Armstrong, S., Freier, A., and Marzullo, K. Multicast Transport
Protocol. RFC 1301. February, 1992.

2. Cheriton, David R. VMTP as the Transport Layer for High-
Performance Distributed Systems.IEEE Communications Magazine,
27(6), June 1989.

3. Clark, David D., Lambert, Mark L., and Zhang, Lixia. NETBLT: A
Bulk Data Transfer Protocol. RFC 998. March, 1987.

4. Cooper, Michael A. Overhauling Rdist for the ‘90s. In Proceedings of
Large Installation System Administrators Workshop Proceedings (LISA
VI). Long Beach, CA, 1992.

5. Deering, Steve. Host Extensions for IP Multicasting. RFC 1112.
August, 1989

6. Ioannidis, J. and Maguire G. Jr. The Coherent File Distribution
Protocol. RFC 1235. June, 1991.

7. Mogul, Jeffrey. Broadcasting Internet Datagrams. RFC 919. October
1984.

8. Postel, Jon. User Datagram Protocol. RFC 768. USC/Information
Sciences Institute. August. 1980.

9. Postel, Jon. Transmission Control Protocol. RFC 793. USC/
Information Sciences Institute. September, 1981.

10. Powell, M. L. and Presotto, D. L. Publishing: A reliable broadcast
communication mechanism. Proceedings of the9th Symposium on
Operating Systems Principles, pgs. 100-109, New York, 1983.

