Why Use a Fishing Line When You Have a Net?
An Adaptive Multicast Data Distribution Protocol *

Jeremy R. Cooperstock and Steve Kotsopoulos
Department of Flectrical and Computer Engineering
University of Toronto

Abstract

The design and implementation of a system to
provide reliable and efficient distribution of large
quantities of data to many hosts on a local area
network or internetwork is described. By exploit-
ing the one-to-many transmission capabilities of
multicast and broadcast, it is possible to trans-
mit data to multiple hosts simultaneously, using
less bandwidth and thus obtaining greater effi-
ciency than repeated unicasting. Although per-
formance measurements indicate the superiority
of multicast, we dynamically select from available
transmission modes so as to maximize efficiency
and throughput while providing reliable delivery
of data to all hosts. Our results demonstrate that
file-distribution programs based on our protocol
can benefit from a substantial speed-up over TCP-
based programs such as rdist. For example, our
system has been used to distribute a 133 Kbyte
password file to 68 hosts in 20 seconds, whereas
the equivalent rdist took 251 seconds.

1 Introduction

Distributing data to multiple hosts using
connection-oriented protocols such as TCP [1] can
be inefficient because the data must be transmit-
ted over the network multiple times, once to each
target. Popular file distribution programs, includ-
ing rcp, rdist, and track [2], are all based on
this protocol. The time they require to distribute
files to a group of machines is proportional to the
number of machines in that group.'

*Permission has been granted by the USENIX Associa-
tion to reprint the above paper. This paper was originally
published in the 1996 USENIX Technical Conference Pro-
ceedings. Copyright © USENIX Association, 1996.

TRecent improvements to rdist include provisions for
parallel update [3], which involves sending files to a num-
ber of clients simultaneously. Using this method, file dis-

Modern local area networks, such as Ethernet
and FDDI, support one-to-many communication
via broadcasting [4] and multicasting [5]. By ex-
ploiting these capabilities, it is possible for a sys-
tem to send data to multiple hosts simultaneously,
thereby greatly reducing network traffic, host load,
and elapsed time. Since broadcast and multicast
packets can be sent only as datagrams, it is nec-
essary to forgo connection-oriented protocols and
instead implement the system using connectionless
protocols such as UDP [6].

Unfortunately, the UDP protocol is unreliable:
neither delivery nor ordering of UDP data packets
is guaranteed. A further problem is that broad-
cast packets cannot travel outside of a local area
network, and while multicast does not suffer this
limitation, it is not supported by all hosts. To
address these problems; we designed and imple-
mented the Adaptive File Distribution Protocol
(AFDP). AFDP provides reliable, rate-controlled
delivery of data to multiple hosts, automatically
determining the best transmission mode, accord-
ing to the number of hosts, their capabilities, and
support from the connecting networks. The proto-
col is implemented in two co-operating programs,
similar in function to rcp, but capitalizing on the
connectionless facilities of UDP. With its addi-
tional tuning features, AFDP allows the user con-
trol over the trade-off between speed (throughput)
and host and network loading.

Using the AFDP programs as building blocks,
we have constructed a prototype file update appli-
cation, called afdpdist. Although it is commonly
held that a performance penalty must be paid for
a large group, our experimental results indicate
that afdpdist can distribute files to a group of

tribution time can be reduced by a factor of almost four.
However, repeated unicasting is still used as the transmis-
sion mode, and thus, distribution time remains dependent
on group size.

machines in time independent of group size. While
afdpdist is rather crude, we hope that it can be
used as a proof-of-concept to design and build a
better rdist.

We now survey related work to AFDP, then de-
scribe the AFDP protocol. Following this, we dis-
cuss the performance of our system and summarize
some applications of AFDP including afdpdist.

2 Related Work

The most relevant related work is that of the Rel:-
able Multicast Protocol (RMP) [7], recently imple-
mented by Whetten et al. Similar to the MBusl
[8] and the Totem protocol [9], it provides reliable,
ordered delivery of data. Like AFDP, RMP goes
beyond these earlier systems by allowing multiple,
simultaneous senders, and does not rely on hosts
to provide multicast support.

Similar systems have been proposed and imple-
mented, but these generally rely on a single trans-
mission mechanism. For instance, loannidis et
al. implemented CFDP [10], a one-to-many distri-
bution system without any flow control facilities.
Oki et al. implemented The Information Bus [11],
which uses a retransmission protocol to provide
reliable delivery semantics. Because these sys-
tems implement their group communications us-
ing broadcast, exclusively, they cannot be used to
distribute data beyond a LAN.

Clark et al. describe the NETBLT protocol [12]
for rapid transfer of large quantities of data be-
tween computers. To achieve high throughput,
NETBLT uses a transmission rate-control algo-
rithm similar to ours. However, since this i1s a
connection-oriented protocol, it is not applicable
to efficient group communications.

Other research has dealt with multicast trans-
port protocols and flow control problems. For ex-
ample, Cheriton describes the V Distributed Sys-
tem [13], which also utilizes multicast communica-
tion primitives, but only offers “best-effort,” not
reliable delivery. Armstrong et al. propose a Reli-
able Multicast Transport [14] protocol to provide a
network service that could be used to implement
a system such as ours. Unlike AFDP, though, it
cannot be supported by hosts that do not have
multicast capability.

Birman et al. constructed the ISIS system
[15, 16], which offers reliable broadcast and multi-
cast as part of its toolkit approach to distributed
systems design. Unfortunately, ISIS requires sep-
arate acknowledgements from each destination,

which limits performance and scalability.

3 The Adaptive File Distri-
bution Protocol

AFDP was designed with the goals of efficiency
and flexibility. We wanted to distribute large
files?, typical of operating system upgrades and
the increasingly common image and MPEG files,
to all group members reliably, efficiently, and as
quickly as possible. To provide maximum flex-
ibility, multiple hosts should be able to transmit
data concurrently. The network, as well as all par-
ticipating hosts, are assumed to support (unreli-
able) broadcast transmissions, and may also sup-
port multicast. It is also assumed that varying
network and host loads will cause fluctuations in
available network bandwidth as well as reception
capabilities of the hosts.

These requirements motivated an approach that
capitalizes on available communication modes and
provides a low-overhead, rate-based flow-control
strategy to ensure reliable delivery. Note that we
presently provide very little fault tolerance. If a
network partition arises between group members,
or a host fails, we make no attempt to recover from
the error. This is an area for future work.

3.1 Flow Control

Traditional flow control in transport protocols
including stop-and-wait and go-back-N were de-
signed with point-to-point connections in mind
[17]. Because these techniques require positive ac-
knowledgements from hosts receiving data, their
performance tends to suffer as the group size, and
hence return traffic to the sender increases. The
selective-repeat technique addresses this shortcom-
ing with a negative acknowledgement scheme: the
sender transmits the entire message, as a series of
message packets, to a group of receivers that col-
late the packets by sequence number. If a receiver
discovers that it is missing a packet, by detecting a
gap in the sequence numbers, it asks the sender to
retransmit it. However, this technique may suffer
if the network is frequently dropping data, thus
requiring the sender to retransmit many packets.

AFDP combines selective-repeat with a rate-
based flow control strategy to prevent unaccept-
able packet losses. Like Henriksen [17], we wish to

2The current range of sequence numbers allows AFDP
to support up to 4 terabyte files.

avoid wasting bandwidth by unnecessary retrans-
missions. Therefore, our system attempts to main-
tain a transmission rate that is as high as possible
without resulting in dropped packets.

3.2 Protocol Overview

AFDP is based on the publishing model [18], in
which any host receiving data is called a subscriber
while any host sending data is called a publisher.
One special subscriber is designated as the sec-
retary for each group; this host is responsible for
managing group membership, authorizing publish-
ers, and determining the appropriate transmission
mode to be used. Publishing does not require ex-
plicit acknowledgements of received data. Instead,
subscribers use negative acknowledgements as a
means of requesting retransmission of missing or
corrupted packets.

The interaction between subscribers, publishers,
and secretary is depicted in Figure 1. Subscribers
wishing to receive messages may join the group at
any time by contacting the secretary. The identity
of the secretary 1s either specified on the command
line or found by broadcasting or multicasting a
FIND_SECRETARY query to a well-known port.
If no secretary replies, the subscriber may become
the group secretary, thereby creating a new group.
In the case of races, a voting procedure selects the
secretary with the highest IP number. The secre-
tary may disband the group at any time by sending
a SHUTDOWN message to each subscriber.

Because the secretary is typically a long-lived
process running on a reliable host, whereas sub-
scribers may join and leave the group at any time,
we separated the functionality of these two pro-
cesses. The secretary maintains information about
the group in the form of a host table. It listens on
three ports for messages: one well-known port for
FIND_SECRETARY queries, an admin port for
JOIN and LEAVE requests from subscribers, and
a publish port for PUBLISH_REQUEST messages
from publishers.

JOIN and LEAVE requests may be issued by
subscribers at any time. Each provides the iden-
tity of the subscriber, and the name of the group
the subscriber wishes to join or leave. In addi-
tion, the JOIN request specifies whether or not the
subscriber is capable of receiving multicast pack-
ets. The secretary replies to these requests with
a JOIN_REPLY or a LEAVE_REPLY message, as
appropriate.

While the secretary will allow hosts to join
groups even while data is being published, these

new subscribers may not influence the publishing
rate until the start of the next message. If; in the
event that data packets for the current message are
being distributed in multicast or broadcast mode,
all subscribers may receive these packets. To avoid
confusion, new subscribers simply ignore packets
from messages that were begun earlier than their
JOIN_REPLY timestamps.

When a publisher wishes to transmit a message,
it first sends a PUBLISH_REQUEST to the secre-
tary, who in turn will either refuse the request or
grant permission. The secretary will only refuse a
PUBLISH_REQUEST if the number of active pub-
lishers exceeds some threshold. We are presently
adding features to prevent all but a select number
of hosts from publishing. If a host is granted pub-
lishing permission, it is told which transmission
mode to use, as well as an initial suggested inter-
packet interval, T,. If unicast will be employed,
the secretary also provides the publisher with a
current list of subscribers.

The secretary, in consultation with the pub-
lisher, is responsible for selecting a transmis-
sion mode that is appropriate for all subscribers.
Since multicast is considerably more efficient than
broadcast, this mode is chosen whenever all hosts
support 1t. However, if some hosts do not support
multicast, the secretary must choose between uni-
cast and broadcast. (A planned enhancement to
AFDP would allow the secretary to instruct the
publisher to multicast to some hosts and unicast
to others.) Since broadcast packets cannot travel
beyond a LAN, this option is viable only when
all subscribers are on the same LAN as the pub-
lisher. If so, the secretary will select unicast when
the number of subscribers i1s below some thresh-
old, and broadcast, otherwise. Note that when the
group consists of two or more subscribers, unicast
mode will require multiple transmissions of each
packet. The threshold at which AFDP switches
from unicast to broadcast mode can be controlled
by the user, allowing one to influence the tradeoff
between network loading and CPU usage.

Once granted permission, the publisher trans-
mits the message as a sequence of data packets at
intervals of 7}, milliseconds. Each packet contains
the current sequence number, as well as the to-
tal number of packets in the message. Under the
negative acknowledgement scheme, subscribers are
silent unless they require the publisher to resend
one or more packets. Subscribers perform a se-
quence check function at intervals of a fixed wait
time, Ty, to determine if any packets are outstand-
ing. This will be true if there is a gap in received

PUBLISH_REQUEST
or
PUBLISH_PERMISSION

Publisher

Protocols:

Subscriber

RESEND_REQUEST

Figure 1: Interprocess communication in AFDP. The ports are defined as follows: 1. search port. 2. admin port.

3. publish port. 4. group data port. 5. control port. Note that a group may consist of multiple subscribers and

publishers, although for simplicity, we only show one of each.

sequence numbers or if no packets have arrived
since the last sequence check. Note that a packet
is considered successfully received only if its data
was not corrupted.

If any packets are outstanding, the subscriber
issues a RESEND_REQUEST, which is simply a
negative acknowledgement of the missing pack-
ets, to the control port of the publisher. This
contact is handled via TCP, which incurs a mi-
nor penalty for the connection set-up time, but
ensures reliable delivery of the NAK. This is of
paramount importance, especially in light of the
role this message plays in forcing the publisher to
slow down its transmission. Provided that the re-
quest is valid (i.e. the subscriber is an authorized
group member and the packets it has requested
have already been sent to the group), the pub-
lisher first increases the value of 7},, then services
the retransmission request before returning to nor-
mal publishing. The more RESEND_REQUESTS

serviced, the more the publisher must slow down.

This technique may present a danger in the case
of temporary partitions, in which the publisher
could potentially be flooded by an implosion of
negative acknowledgements. To reduce the like-
lihood of this occurring, subscribers delay a ran-
dom amount of time before requesting resends of

missing packets. A RESEND_REQUEST is then
issued only if some packets are still missing at
the end of the delay. Furthermore, all retrans-
mitted packets are sent to the entire group, based
on the assumption that if one host has missed
a packet, it is likely that others have too. We
are presently experimenting with additional tech-
niques intended to reduce further the chance of
multiple subscribers requesting a resend of the
same packet. One such method is for the publisher
to inform subscribers in advance which packets 1t
is about to resend.

Similar to VMTP [19], the publisher periodi-
cally decreases the value of T}, to ensure that it is
transmitting at the maximum rate the subscribers
can handle. In order to prevent AFDP from over-
loading the network, we typically enforce a reason-
able minimum on 7,,. However, a rabid mode that
can be used to override this minimum, as well as a
nice mode that raises this minimum to 100 msec,
are provided as options.

Under ordinary circumstances, our rate-based
flow control mechanism minimizes unnecessary re-
transmissions. As soon as one subscriber notices
that packets have been dropped, the publisher 1s
forced to decrease its transmission rate, thus re-
lieving pressure on the network. While this tech-

packet size || publisher throughput (Kbytes/s)

(bytes) unicast | multicast | broadcast
9000 820 818 N/A
4096 405 407 N/A
2048 203 204 N/A
1472 143 142 143
1024 101 102 102

Table 1: Publisher throughput vs. packet size for
different transmission modes. Note that throughput
for multicast and broadcast modes is independent of
group size, provided all hosts are approximately the
same speed and under the same load.

nique reduces publisher throughput, it keeps the
number of retransmissions reasonably low.

3.3 Packet size

Table 1 demonstrates that using larger packets to
transmit data provides greater throughput by re-
ducing protocol overhead and thus increasing ef-
ficiency [19] [17]. Therefore, we are motivated to
avold the use of broadcast, as this transmission
mode imposes a limit of 1472 bytes on packet size.
This limit is due to the fact that broadcast packets
cannot be fragmented by the IP layer, and so must
fit into a single 1500 byte Ethernet frame [20]. Al-
lowing for the UDP and IP headers, the maxi-
mum size of a broadcast UDP packet is 1472 bytes.
However, on some MIPS machines, we found that
the largest allowable broadcast UDP packet size
was 1468 bytes, a value MIPS selected to work
around a DMA problem, so we use this value for
portability. Other architectures allow a broadcast
packet size of 1472 bytes.

We observed that for the same packet size,
throughput is relatively independent of transmis-
sion mode. As a result of the multicast data packet
size limit being over six times that of broadcast
packets, we obtain a corresponding improvement
in peak throughput, as seen in table 1. Hence, we
strongly favor multicast over broadcast whenever
both are supported. Toannidis’ CFDP [10] uses a
packet size of 512 bytes to avoid fragmentation but
we did not observe any benefit in doing so.

3.4 Internetwork Extensions

There are two considerations in scaling this proto-
col to an internetwork environment. We note that
multicast is not universally supported and that
broadcast packets cannot travel beyond a LAN. To
cope with these restrictions, we presently unicast

to remote subscribers, unless all subscribers and
intervening routers support multicast, in which
case we use that transmission mode.

Where multicast is not supported, subscribers
and publishers on remote LANs must specify the
identity of the secretary host on the command line.
This way, the exchange of information with the
secretary can proceed with unicast packets.

4 Performance

The performance measurements of Figure 2 were
made on the University of Toronto’s Engineering
Computing Facility (ECF), a heterogeneous work-
station cluster consisting of one MIPS RC6280,
eleven SGls, ranging from R4000 Indys to R4400
multiprocessors, and 30 SUN Sparcl0 systems.
The machines are on a lightly-loaded Ethernet,
connected to several other LANs. Unless noted
otherwise, all of our measurements were performed
using the default AFDP parameters.

4.1 Distribution Time

For each test, a 7.0 Mybte file was transferred
from the publisher to all subscribers. The peak
publisher throughput observed for AFDP was be-
tween 800 and 900 Kbytes/s in unicast and multi-
cast modes, and 140 Kbytes/s in broadcast mode.
AFDP was also evaluated on various other clusters
and across multiple clusters with similar results.
When multicast is supported by all hosts and the
intermediate networks, transfer time is determined
by the network and the speed of the slowest ma-
chine, rather than the number of subscribers. As
Cooperstock and Kotospoulos discuss in a previ-
ous paper [21], even in the worst case, when uni-
cast must be used to all hosts, performance is still
approximately linear in group size.

As can be seen from Figure 2, the performance
of AFDP is primarily determined by the communi-
cation mode used. In unicast mode, data must be
sent to each subscriber separately, so the trans-
fer time is proportional to the number of hosts.
However, in broadcast or multicast mode, data is
sent only once, provided no subscribers request a
retransmission, and received by all subscribers, so
the transfer time remains constant, independent
of group size. Using broadcast, AFDP distributed
the file in 57 seconds, while with multicast, the
time was 15 seconds.

When one or more subscribers are not capable
of receiving packets at the current publishing rate,
they communicate this to the publisher through

200

r - - - - - -~ ® - —

broadcast

******* - - T

multicast

1 1 T T]
8 9 10 11 12 13 14 15 16

number of subscribers

Figure 2: AFDP transfer time vs. number of subscribers using unicast, multicast, and broadcast modes. The

transferred file was 7.0 Mbytes in each case. Note that because of the smaller packet size required by broadcast data,

this mode takes approximately six times as long as multicast (or unicast to only one subscriber).

RESEND_REQUESTS. This means that the pub-
lishing rate can be dictated by the slowest sub-
scriber in the group. While this may not be a
desirable characteristic for all applications, our fo-
cus on reliable file distribution required such an
approach.

We measured peak ftp performance at approxi-
mately 900-1000 Kbyte/s between two SGI R4000
and between two Sun IPC machines, although typ-
ical average throughput may be substantially less.
AFDP consistently matches this performance.® on
lightly loaded machines. While these numbers
may seem unimpressive for our protocol, 1t must
be noted that AFDP can maintain similar pub-
lisher throughput for many subscribers, provided
that multicast is supported by all members. In
this case, files may be distributed to an entire
group as quickly as they could be to a single sub-
scriber, whereas for any TCP-based protocol, the
distribution time is proportional to group size. As
pointed out by one reviewer, the linear relation-
ship of distribution time to group size for TCP-
based protocols could be beaten by arranging the
receivers (subscribers) on multiple ethernet seg-
ments. However, we submit that such architec-
tures are not always available.

30n the Sun IPC machines, this figure is attained in
rabid mode. In order to be “network-friendly,” we normally
avoid this mode.

4.2 Adaptivity

As shown in the saw-tooth graph of Figure 3,
AFDP dynamically adapts to current network
conditions as determined by subscriber feedback.
While subscribers are receiving data packets cor-
rectly, the publisher slowly decreases the inter-
packet delay, 7}, to a minimum of 10 ms. However,
for every RESEND_REQUEST issued by a sub-
scriber, the publisher immediately increases the
inter-packet delay by 10 ms. This balances the
need for quick adaptation to problems with a con-
servative attempt to maximize throughput.

4.3 Transmission Mode

Since broadcast packets are received by every host
on the LAN, they can waste CPU cycles on non-
participating systems. For example, on an SGI
Indy R4000PC, the processing of broadcast pack-
ets accounted for approximately 11% of CPU us-
age. For this reason, we allow the user to select the
threshold at which AFDP switches from unicast
to broadcast, via a command-line argument. Sites
that wish to avoid broadcasts can set this thresh-
old as desired, to tailor the tradeoffs for their en-
vironment. Based on the transfer times of uni-
cast and broadcast modes in the previous graph,
it would appear logical to select a threshold value
of six.

25 -

20

packet
interval
(ms)

15

10

T T
0 10

T T T
20 30 40

number of packets transmitted

Figure 3: Inter-packet delay, 7, as a function of packet number. Publishers decrease the delay by 1 ms/packet
unless a subscriber issues a RESEND_REQUEST. In this case, the publisher increases the delay by 10 ms, resulting

in the saw-tooth appearance of the graph.

network ftp throughput
(Kbytes/s)
idle 470
rcp 150
AFDP (broadcast) 430
AFDP (multicast) 200
AFDP (unicast) 200

Table 2: ftp throughput while rcp or AFDP is run-
ning. The AFDP transfer was to three subscribers in
each case.

4.4 Network Load

While high throughput is attractive, AFDP, by
default, does not attempt to consume all avail-
able network bandwidth. However, in the rabid
mode, AFDP will attempt to utilize the full band-
width available. To test the default mode, an ftp
transfer between a MIPS 6280 and a Sparc 10 was
run on the same network under the following con-
ditions: relatively idle, with a large rcp transfer
running, and finally, with a large AFDP transfer
running in each of the three transmission modes.
The results of Table 2 indicate that while AFDP
impacts other users of the network, it is no worse
in this regard than rcp, which, by contrast, con-
sumes far more bandwidth.

The performance of our file update program,
afdpdist, discussed in further detail in Sec-

tion 5.1, was then compared with various other
file update programs. For each program, we dis-
tributed a directory containing 7.0 Mbytes of files
of various sizes to subscriber hosts. The results,
shown in Figure 4, demonstrate that afdpdist of-
fers a linear speedup, proportional to the num-
ber of subscribers, over any TCP-based file dis-
tribution program. For a large number of hosts,
afdpdist distributes files far more efficiently than
presently available programs such as rdist and
track.

5 Applications

AFDP has been implemented as two co-operating
programs, which may be run on most Unix plat-
forms and without any kernel modifications. One
program, afdpjoin, handles subscriber and secre-
tary functions, and the second, afdpsend, handles
publisher functions. The publisher can also spec-
ify an external program to be run by each sub-
scriber after receiving the file. This allows AFDP
to be used as a building block in the construction
of larger distributed applications, such as the ones
we now present.

5.1 The afdpdist Program

In large workstation clusters, there are often many
files that must be updated frequently. This task

300

200 -
transfer
time
(seconds)
100
¥ afdpdist - multicast
0 [I I I I I

1 2 3 4 5 6

1 T 1 1 T 1
8 9 10 11 12 13 14 15 16

number of subscribers

Figure 4: File distribution time vs. number of subscribers for various file update programs. In each case, the entire

contents of a 7.0 Mbytes directory were transferred to each host. Peak Ethernet utilizations for the various programs
were: rep 95%, rdist 88%, track 74%, afdpdist (multicast mode) 90%, afdpdist (broadcast mode) 15%. The
decreased ethernet utlization of afdpdist in broadcast mode vs. multicast and unicast modes is due to the limiting

effect of system calls on the smaller broadcast packets. Also note that the original version of rdist was used for these

tests.

can be automated with programs such as rdist
or track, but their use of point-to-point commu-
nication can be very inefficient if many of the hosts
are on the same local area network. For example,
on the ECF cluster, an 800 Kbyte /etc/passwd
file is tracked from the master server to 40 client
systems every five minutes.

An ideal solution would be to utilize AFDP as
the transport layer protocol of track or rdist,
an idea we have discussed with Michael Cooper,
who has been tuning the performance of the latter.
Cooper agrees, but notes that this would require
major changes to rdist. Therefore, we feel that
this merge would best be accomplished as part of
the re-write he is planning [3].

In the meantime, we developed our own rdist-
like program, afdpdist, as a proof-of-concept.
This allowed us to benchmark AFDP against other
file distribution applications and to demonstrate
the suitability of our protocol to such tasks.

While beta testing AFDP, John DiMarco
<jdd@cdf.toronto.edu> reported:

Performance was impressive. afdpsend
of /etc/passwd to 68 machines took
twenty seconds. The equivalent rdist*
took 251 seconds.

4John DiMarco is making use of the recent enhance-

For the following discussion, we adopt termi-
nology from track. An slist is a subscription list,
containing a list of files and directories to be dis-
tributed, and a statsfile contains file size and modi-
fication time information for each entry of the slist.

When afdpdist is invoked on the master ma-
chine, 1t will generate a statsfile for the specified
slist and send this file to all subscribers using the
AFDP protocol. Upon receipt of the master stais-
file, each subscriber will generate its own local
statsfile and compare the two to produce a list of
requested files. This list is then sent back to the
master over a TCP connection. When the master
has received replies from all subscribers, 1t com-
bines their request lists and generates a bundle
of all the necessary files. The bundle is then dis-
tributed by AFDP to all subscribers, which un-
bundle the files they requested.

This scheme works well provided that most sys-
tems require the same files, such as after a soft-
ware upgrade on the master system. If only one
host needs files, then this can be very wasteful. In
this case, it would be better to unicast files to the
one host.

The current implementation of afdpdist is nei-

ments to rdist, provided by Cooper, which perform mul-
tiple TCP transfers in parallel.

ther feature-rich, nor does 1t include as many con-
figuration options as rdist or track. For sim-
plicity, the program uses tar to bundle and un-
bundle files, and shell scripts to carry out oper-
ations whose performance is not critical. For ex-
ample, the command, ‘cat request.* | sort |
uniq > bundle.list’, is used to merge together
the lists of files requested by subscribers. Also,
the slists specification is presently very restrictive:
only a single directory tree can be specified, with
no provision to exclude subdirectories.

5.2 Conferencing

The ease with which AFDP supports group com-
munication makes it ideally suited to distributed
“slide-show” applications, in which files are simul-
taneously sent to all participants.

We have implemented an external front-end to
AFDP, called magic-cat, which takes appropriate
action based on the contents (as determined by the
file utility) of any received files to develop sample
applications of this sort. For example, magic-cat
uses xloadimage to view GIF and JPEG images,
and ghostview to display Postscript files. We
have successfully used this application in Com-
puter Science and Engineering tutorials, allowing
the instructor to control the demonstration, just
as in a real slide-show.

6 Conclusions

The group communication capabilities of broad-
cast and multicast offer an appealing alternative to
repeated unicasting of data to many machines. To
achieve reliability and efficiency, a retransmission
scheme and rate-based flow control mechanism
must be added. AFDP provides these features,
allowing large amounts of data to be distributed
quickly to multiple hosts on a LAN. Changes in
available network bandwidth as well as subscriber
capabilities are dynamically accommodated.

Our initial implementation of afdpdist demon-
strates the potential of file distribution that is de-
pendent only on the network and the speed of the
slowest machine, rather than the number of par-
ticipating hosts. Even for relatively small clusters,
the improved performance of afdpdist over rdist
or track is significant. Other applications making
use of AFDP may benefit similarly.

Availability

The source code for AFDP is available through the
URL http://wuw.ecf.toronto.edu/afdp or via
anonymous ftp from
ftp.ecf.toronto.edu:/pub/afdp/. Questions
should be addressed to afdp@ecf.toronto.edu.
AFDP has been tested under TRIX, SunOS, So-
laris, RISC/os, Ultrix, and SVR4.2. Our sources
include a library of convenience functions for writ-
ing network applications, which can be re-used in
other programs.

References

[1] Jon Postel. Transmission Control Protocol.
RFC 793, USC/Information Sciences Insti-
tute, September 1981.

[2] Daniel Nachbar. When Network File Systems
Aren’t Enough: Automatic Software Distri-
bution Revisited. In Proceedings of the Sum-
mer USENIX Conference, Atlanta, GA, 1986.

[3] Michael A. Cooper. Overhauling Rdist for
the '90s. In Large Installation System Admin-
istrators Workshop Proceedings (LISA VI),
pages 1-8, Long Beach, CA, 1992.

[4] Jeffrey Mogul. Broadcasting Internet Data-
grams. RFC 919, October 1984.

[5] Steve Deering. Host Extensions for TP Multi-
casting. RFC 1112, August 1989.

[6] Jon Postel. User Datagram Protocol. RFC
768, USC/Information Sciences Institute,
August 1980.

[7] Brian Whetten, Simon Kaplan, and Todd
Montgomery. A High Performance Totally
Ordered Multicast Protocol. Submitted for
publication, 1995.

[8] Alan Carroll. ConversationBulider: A Col-
laborative Erector Set. PhD thesis, Depart-
ment of Computer Science, Univeristy of Illi-

nois, 1993.

[9] D. A. Agarwal, P. M. Melliar-Smith, and
L. E. Moser. Totem: A Protocol for Mes-
sage Ordering in a Wide-Area Network. In
Proceedings of the First ISMM International
Conference on Computer Communications
and Networks, pages 1-5, San Diego, CA,
June 1992.

[10] J. Toannidis and G. Maguire Jr. The Coherent
File Distribution Protocol. RFC 1235, June
1991.

[11] Brian Oki, Manfred Pfuegl, Alex Siegel, and
Dale Skeen. The Information Bus - An Archi-
tecture for Extensible Distributed Systems.
In Fourteenth ACM Symposium on Operating
Systems Principles, pages 58-68, Asheville,
NC, December 1993.

[12] David D. Clark, Mark L. Lambert, and Lixia
Zhang. NETBLT: A Bulk Data Transfer Pro-
tocol. RFC 998, March 1987.

[13] David R. Cheriton. The V Distributed Sys-
tem. Communications of the ACM, 31(2),
March 1988.

[14] S. Armstrong, A. Freier, and K. Marzullo.
Multicast Transport Protocol. RFC 1301,
February 1992.

[15] Kenneth P. Birman and Thomas Joseph. Ez-
ploiting Replication. Addison-Wesley/ACM
Press Series, Sape J. Mullender, ed., June
1988.

[16] Kenneth P. Birman. The Process Group Ap-
proach to Reliable Distributed Computing.
Communications of the ACM, 36(12):37-53,
December 1993.

[17] Eva Henriksen, Gisle Aas, and Jan B. Ryd-
ningen. A Transport Protocol Supporting
Multicast File Transfer over Satellite Links.
In Proceedings of FEleventh IEEE Phoeniz
Conference on Computers and Communica-
tions (IPCCC), pages 590-596, Scottsdale,
Arizona, April 1992.

[18] M.L. Powell and D. L. Presotto. Publishing:
A Reliable Broadcast Communication Mech-
anism. In Proceedings of the 9th Symposium
on Operating Systems Principles, pages 100—
109, New York, 1983.

[19] David R. Cheriton. VMTP as the Trans-
port Layer for High-Performance Distributed
Systems. IEEFE Communications Magazine,
27(6), June 1989.

[20] W. Richard Stevens. UNIX Network Pro-
grammang. Prentice Hall, 1990.

[21] Jeremy R. Cooperstock and Steve Kotsopou-
los. Exploiting Group Communications for
Reliable High Volume Data Distribution. In

Proceedings of IEEE Pacific Rim Conference
on Communications, Computers, Visualiza-
tion, and Signal Processing, Victoria, BC,

May 1995.

Biographical Information

Jeremy Cooperstock received the B.A.Sc. in
Computer Engineering from the University of
British Columbia, Vancouver, Canada, in 1990
and the M.Sc. in Computer Science from the Uni-
versity of Toronto, Toronto, Canada, in 1992. He
is currently working towards the PhD in Electri-
cal and Computer Engineering at the University
of Toronto. From 1987 to 1988, he worked at
IBM Research in Haifa, Israel, and in 1989, at
the IBM T.J. Watson Research Center in York-
town Heights, New York. His research interests
include reactive environments, learning in robotic
and autonomous systems, communication in dis-
tributed systems, and competitive analysis of trad-
ing strategies. He can be contacted via email at
jer@dgp.toronto.edu.

Steve Kotsopoulos is a Master’s student in
the Department of Electrical and Computer Engi-
neering at the University of Toronto. Since 1988,
he has been a systems programmer at the univer-
sity’s Engineering Computing Facility. His inter-
ests include networking, security and distributed
systems. He received his B.A.Sc. in Electrical En-
gineering from the University of Toronto in 1988.

In his spare time, Steve enjoys snowboarding
and skateboarding. He can be contacted via email
at steve@ecf.toronto.edu.

