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Abstract 

On September 26, 1999, a musical performance, taking place at McGill University, was 
transmitted, in real time, to an audience at New York University, over the Internet. While 
Internet streaming audio technologies have been in use for several years, what made this 
event unique was that the audience in New York experienced high-fidelity, multichannel 
audio, without interruption. In order to achieve this result, a custom system was developed 
employing both TCP and UDP protocols, and providing its own buffering and retransmission 
algorithms. The motivation for this approach is explored, and experiments justifying the 
decisions made are explained. 

1 Introduction 

The growth of the Internet reshaped our work lives. In recent years, it has also begun to 
affect and redefine various areas of entertainment, in particular, that of music. Until the last 
decade, the idea of downloading music to one’s home, at great convenience and essentially 
zero-cost, would have been unthinkable to many. Today, real-time Internet music streaming, 
such as RealAudio (www.real.com) and MP3 (www.mp3.com), is regularly enjoyed by 
millions of listeners. 

The limiting factor in such transmissions has typically been the bandwidth of available 
networks. Therefore, Internet audio streaming technologies are invariably characterized by 
relatively low-bandwidth, low quality, stereo sound. Although this may satisfy the minimal 
requirements of casual audiences, it is by no means sufficient for a society of musicians and 
professional audio engineers [l], to whom high-fidelity, multichannel audio is a necessity. 
Fortunately, the recent emergence of advanced research networks provides an opportunity to 
explore the possibility of streaming high quality, high bandwidth, multichannel audio through 
the Internet, in real time. 

This remainder of this paper describes our efforts in building a demonstration of such a 
system for the 108th Audio Engineering Society (AES) Convention. 
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2 The Demonstration 

The demonstration, which took place on September 26, 1999, involved the 
transmission of an AC-3 audio signal accompanied by an MPEG-1 video stream. A 
live performance of the McGill University Swing Band, playing at McGill’s Redpath 
Hall, was delivered to an audience at the Cantor Film Center of New York University, 
with a time delay of three seconds. At the Cantor Film Center, an NYU dancer 
performed with the music. 

2.1 Hardware 

Figure 1 illustrates the setup of the demonstration. The performance at McGill 
University was fed into a Sony PCM-800, which converted the six channels of analog 
input to PCM at 16 bits per channel, 48 kHz, which were in turn provided to a Dolby 
DP569 encoder via three AES/EBU streams. The resulting AC-3 data, encapsulated 
in an AES/EBU stream at 1.536 Mbps, was read by the sender program running on a 
Silicon Graphics Indy (R4600 with 64 Mbytes RAM). The sender was responsible for 
segmenting the audio data into discrete packets and transmitting them over the 
network, to another Indy R4600 with 150 Mbytes RAM), located at the Cantor Film 
Center. A receiver program, running on this machine, read the packets from the 
network, extracted the audio data, and provided it via the Indy’s AES/EBU port, to a 
Dolby DP562 decoder, which decompressed the AC-3 data and delivered the audio to 
a playback system. 

2.2 Audio and Video Format 

The AC-3 audio data (encoded Dolby 5.1) was encapsulated in a stereo AEWEBU (48 
kHz, 16 bit) stream provided by the Dolby Encoder. AC-3 carries five full-range 
channels and one subwoofer [2], but because of compression, does not require the full 
bandwidth of AES/EBU. While it is therefore possible to reduce the AC-3 bandwidth 
demands by discarding the padded zeros of the AES/EBU stream, we chose not to do 
so, as our research goal involves even higher bandwidth applications. 

In addition to the audio stream, we utilized Cisco’s IP/TV system for the encoding, 
transmission, and decoding of an MPEG-1 video. As IP/TV does not presently 
provide support for external synchronization, the alignment of audio and video 
streams was performed manually, prior to the demonstration. The MPEG-1 stream 
required approximately 1.5 Mbps, thus, the average bandwidth for the demo was in 
the order of 3.0 Mbps. However, as will be discussed below, additional bandwidth 
was required following a period of network congestion. 
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2.3 Network Route 

The audio and video streams were transmitted over the high-performance networks 
managed by Canarie (Canada) and Internet2 (US) corporations. Although these 
networks have relatively high capacity, there were several bottlenecks between 
Montreal and New York that limited the bandwidth available to us (see Figure 2). 

These bottlenecks may not appear significant, as our bandwidth demands were only a 
fraction of the available capacity. However, transient network congestion induced by 
other high bandwidth applications would prove fatal to a simple audio transmission 
protocol. We were challenged to ensure robustness, despite the lack of bandwidth 
guarantees and the unavailability of any bandwidth reservation protocols on the 
network. Just as on a public Internet, we had to compete with all the other users. The 
only concession made was for the first half of the demonstration, during which the 
network news feeds (Usenet) coming into both McGill and NYU were temporarily 
disabled. 

3 The Audio Transmission System 

The design of our transmission protocol was the most critical component of the 
system. Since the audio data was to be streamed and played back in real time, the 
protocol had to ensure delivery of data to the receiver with low latency, low error and 
loss rate, and most importantly, without breaks in continuity. It is this final point that 
ultimately determined the success of the demonstration, as any interruption of the 
output stream would cause an immediately noticeable break in the music. 

Our design was based in part on the Adaptive File Distribution System (AFDP) [3], 
which provides efficient and reliable delivery of a file to multiple hosts on an Internet. 
The fundamental difference between AFDP and our application is that the former is 
not bound by real-time constraints. For a streaming audio application, we are willing 
to trade a small amount of reliability in exchange for real-time performance. 

3.1 Network Protocols 

TCP [4] and UDP [5] are the dominant network protocols used for computer 
communication. TCP, a connection-oriented, reliable, and full-duplex protocol, uses 
an acknowledgement and retransmission scheme to guarantee delivery of data. If a 
segment is not acknowledged by the receiver, the sender will continue to retransmit 
until the data is received successfully. Furthermore, TCP ensures an ordered 
reception of packets by delivering packet p,, only after all previous packets, pi, i < ~1, 

have been received. 
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While these mechanisms are well suited to applications such as ftp, telnet, and http, 
they are unsuitable for the transmission of real-time media. This unsuitability is 
related to the characteristics of Internet communication, typified by widely fluctuating 
transmission delays. For example, although the average round trip time (RTT) for data 
sent between McGill and NYU was in the order of 50 ms, it was not unusual to 
observe RTTs of several hundred milliseconds during periods of high network traffic. 
Such delays can cause TCP to activate its congestion avoidance mechanism [6][7] or 
lead to timeouts at the sender, substantially degrading performance [7][8]. 

From the perspective of someone listening to an audio broadcast, if one packet fails to 
arrive before its audio content is scheduled to be played, it is imperative that 
successive packets are not delayed unnecessarily, otherwise, a discernable break in 
the music will occur. 

For these reasons, real-time applications tend to favor UDP, a connectionless, 
unreliable protocol with no flow control mechanism. However, UDP by itself is 
clearly insufficient, and requires additional layers to ensure efficient transport and 
robustness. 

3.2 Program Overview 

Figure 3 presents the structure of the sender and receiver programs and illustrates the 
interactions between them. There are three network sockets created at each host for 
communication between the two programs: 

1. A TCP connection initiated by the receiver, used to request transmission of audio 
data from the sender. 

2. A UDP channel, used for the transmission of most of the audio data. 

3. A TCP connection initiated by the receiver, used for the exchange of control 
packets between the two programs and for the occasional retransmission of 
missing audio data, as will be explained below. 

The sender process maintains an audio queue containing pointers to the data packets 
being transmitted. This process has two threads. One thread continuously reads the 
output of the Dolby encoder, stores this data in 128 packets per second, and adds 
these packets to the audio queue. The second thread is responsible for the 
transmission and retransmission of audio data to the receiver. 

The receiver process consists of a single thread, which continuously checks the UDP 
and TCP sockets for incoming data and stores these received packets in an audio 
queue. At every iteration through the loop, a periodic timer is checked. Whenever 
the timer expires, audio data is dequeued and sent to the playback device and the 
remainder of the queue is checked for missing data. If necessary, a retransmission 
request is then issued to the sender. 
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All the data transmission by our system takes place in the form of user-defined data 
and control packets. Data packets consist of an identifying header and a payload, 
which carries audio data. The control packets are used primarily for retransmission 
requests. TCP is used to ensure delivery of the high-priority control packets, while 
data packets are usually transmitted by UDP. 

3.3 Packet Recovery Mechanism 

Since packet loss is inevitable, we require a lightweight recovery protocol in our 
program. This protocol must be reliable, subject to best-effort limitations, and fast, 
such that the receiver recovers the missing data in time for playback. Our ability to 
satisfy these demands is determined jointly by the network architecture, link capacity, 
competing traffic, and the algorithms employed. It is only this last variable over 
which we have any control. 

As the stop-and-wait and go-back-N recovery mechanisms of TCP are inappropriate 
for real-time media, we employ a selective-repeat technique instead. Each data packet 
is labeled with a unique sequence number by the sender. The receiver detects missing 
data by periodically checking for a gap in the sequence numbers of received packets. 
When such a gap is found, the receiver issues a negative acknowledgement (NAK) to 
the sender as a retransmission request [3]. 

We illustrate the packet recovery protocol, by intentionally dropping 30 seconds of 
audio data in the middle of a transmission, as shown in Figure 4. At the onset of 
simulated packet loss, the receiving rate drops to zero. The receiver then issues a 
retransmission request and shortly thereafter, the retransmitted packets begin to arrive. 

Since the packet loss in this case is not caused by network congestion, the simulation 
is, of course, completely artificial, and serves only to demonstrate the high-level 
operation of the program. During periods of network congestion, retransmission of 
lost data cannot be guaranteed to arrive in a timely manner. We address this point in 
the following section. 

4 Protocol Issues 

Consistent with our observations, it has been demonstrated previously that packet 
losses are typically bursty [9][10]. Under conditions of packet loss caused by network 
congestion, it is therefore likely that the congestion is short-lived, in which case, 
retransmitted data can arrive without difficulty. However, it is also possible that the 
retransmission will face similar or worse congestion than that which caused the 
original packet loss, especially if the resend occurs in close proximity to the initial 
transmission. By introducing a receive buffer that is longer than the expected burst 
duration, retransmission congestion problems can be reduced significantly. 
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recovery mechanism, TCP is preferable under modest network loads. This should 
come as no surprise, since TCP has been optimized for such environments. 

However, when network congestion increases, TCP does not cope as well. In fairness, 
TCP was designed to be well behaved to the network under such conditions, whereas 
our needs are somewhat greedy. As can be seen in the figure, for our particular 
experimental configuration, UDP is better able to recover from network congestion 
brought on by competing traffic in excess of 30 Mbps. Although TCP will eventually 
deliver 100% of the packets, they do not arrive in time for playback. Thus, the 
effective recovery rate of TCP is significantly lower than our UDP protocol. 

Interestingly, we note that despite the quantitative superiority of UDP (70% recovery 
vs. 17% for TCP) under severe congestion, there is little observable difference in terms 
of the audio quality. Once there is a gap in the playback, it is immaterial to the listener 
whether that gap lasts for 80 ms or 800 ms. In fact, it may be preferable to mute for 
several seconds rather than play a segment corrupted by missing packets. As discussed 
in Section 6, we are presently working on a variation of the protocol in which a small 
amount of loss will be unnoticeable. 

4.3 TCP Tuning 

The results above encourage us to employ TCP for recovery provided packet loss is 
reasonably low. Although TCP is not an ideal protocol for bulk data transmission, 
various modifications can be made to improve its throughput [ 111. For example, the 
size of the sliding window advertised by the receiver limits the amount of data that the 
sender can transmit pending an explicit acknowledgement [ 121. To compensate, we 
increase the TCP buffer size on both sender and receiver, thereby improving throughput 
[I 11t131. 

The selective acknowledgement protocol, along with various other extensions 
[S][ 14][15], is designed to improve the performance of TCP in the event of multiple 
missing segments within a window. Unfortunately, these modifications cannot change 
the fact that TCP, over a lossy network, is limited by its congestion control algorithm. 
Thus, a TCP-based retransmission approach may be ill-advised unless the receiver 
employs a large delay between packet receipt and playback. For interactive music 
applications [l], however, minimal latency is imperative so TCP is inappropriate. 

5 Results and Conclusions 

Although considerable efforts went into the design and development of the system, the 
authors were surprised by how well it worked. Given the unreliability of network 
communications and the unavailability of bandwidth reservations, at least a few 
glitches were expected. Indeed, during development and tuning, various problems with 
the network configuration were noted, each of which could have proved fatal to the 
demonstration. 
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Following a cautious initial demonstration employing a twenty second buffer, the 
delay was reduced to a mere three seconds. When this failed to introduce 
interruptions to the audio stream, the network news feed into NYU was resumed, 
thereby generating considerable competing traffic at the receiver end. At this point, 
several interruptions to the Cisco IP/TV video stream (requiring similar bandwidth to 
our audio system and utilizing the same delay) were observed. However, at no point 
during the demonstration did the audio break from a continuous stream. 

In terms of lessons learned, our experiments highlighted some of the strengths and 
weaknesses of TCP and UDP as network protocols for real-time transmissions. 
Clearly, each has its place, but neither, alone, is sufficient for applications of this 
nature. It is our hope that the work started here will motivate the development of 
improved protocols that are better suited for high-fidelity, high-bandwidth, and low- 
latency communications over the Internet. 

6 Ongoing Work 

We are currently extending our system for a more demanding task: the transport of six 
channels of uncompressed audio at 96kHz, 24bits/sample, requiring over 13 Mbps of 
bandwidth. The demonstration of this system is not only a challenge to the designers, 
but is expected to push the limits of the underlying networks to their capacity. As 
such, some amount of packet loss will be unrecoverable within the delay limits 
imposed by a real-time demonstration. Therefore, our protocol will be modified to 
transmit selective bit slices of the audio samples, dynamically, based on available 
bandwidth. For example, under periods of severe congestion, we will make best- 
effort delivery attempts on the most significant bits in order to provide at least a low- 
fidelity playback. As congestion decreases, we can increase the number of bits to be 
transmitted, thereby improving the audio quality. 

In another vein, we are developing a loss recovery protocol on top of UDP, which 
provides many of the desirable features of TCP, in particular, flow control and 
reliability, while offering a less restrictive congestion avoidance mechanism. For 
example, to maximize performance, the slow start algorithm [ 121 will not be 
implemented. However, some congestion control is still required, in particular under 
severe packet loss, as best-effort (i.e. greedy) delivery over the Internet is highly 
problematic [ 161. 
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Figure 1. The hardware components involved in the demonstration. 

Figure 2. The network path between sender and receiver machines, illustrating the available 

capacity on each link, as measured by the pathchar utility (ftp.ee.lbl.gov/pathchar). Depending 

on the time of day and day of week, Internet traffic and the characteristics of the path can vary 

significantly. 
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Figure 3. Communication Software Structure. 
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Figure 5. UDP- vs. TCP-based loss recovery protocols under network congestion. While 

competing throughput is under 30 Mbps, TCP is able to recover fully, but once congestion 

increases beyond this point, UDP is preferable for our application. 
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