
 

Abstract 
Detecting human arm motion in a typical classroom 
environment is a challenging task due to the noisy and 
highly dynamic background, varying light conditions, as 
well as the small size and multiple number of possible 
matched objects. A robust vision system that can detect 
events of students’ hands being raised for asking questions 
is described. This system is intended to support the 
collaborative demands of distributed classroom lecturing 
and further serve as a test case for real-time gesture 
recognition vision systems. Various techniques including 
temporal and spatial segmentation, skin color 
identification, as well as shape and feature analysis are 
investigated and discussed. Limitations and problems are 
also analyzed and testing results are illustrated. 

1 Introduction 
An architectural overview of our hand-raising recognition 
system is presented below in Figure 1. The system is 
designed to detect events based on the assumptions of no 
camera motion and a known subject with relatively well 
defined motion patterns, i.e. upward arm movements.  
These assumptions allow us to exploit prior knowledge 
about the attributes of subjects, such as typical arm motion 
speed and color information. 

Figure 1. Architectural Overview 

Motion information is extracted by temporal 
differencing. The difference map at time t is calculated by 
subtracting the reference frame t-1 from the current frame t 
and then thresholding the subtraction result using a 

threshold map, which is updated using the previous N 
frames in the sequence. Interesting objects are located 
based on this inter-frame data in an object of interest (OI) 
map. The current OI map and the edge map of frame t are 
logically combined and stored into an OI edge map, which 
is then segmented in order to identify likely candidates. 
Provided a non-zero number of candidates remain from the 
OI edge map, the system further refines the set through 
analysis of skin distribution, geometrical extent ratio, 
horizontal span deviation, shape similarity energy and 
other features. Finally, the threshold map is updated again 
using the information obtained from the earlier analysis 
steps. 

Figure 2 illustrates a typical classroom scene in which 
the rows of seats are aligned on a slight slope from the 
horizontal plane. 

 
Figure 2. Typical classroom scenario with horizontal 
reference line drawn to indicate approximate expected 
position of students' heads. 

It can be assumed that the students’ heads are randomly 
distributed and lie approximately on the same horizontal 
plane, indicated by the reference line in the figure.  By 
placing the camera at the front of the classroom, with a 
center of focus aligned parallel to this plane, we can 
confine the analysis, in general, to those parts of the image 
above the students’ heads. 

Motion information is extracted by temporal 
differencing. The difference map at time t is calculated by 
subtracting the reference frame t-1 from the current frame t 
and then thresholding the subtraction result using a 
threshold map, which is updated using the previous N 
frames in the sequence. Interesting objects are located 
based on this inter-frame data in an object of interest (OI) 
map. The current OI map and the edge map of frame t are 
logically combined and stored into an OI edge map, which 
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is then segmented in order to identify likely candidates. 
Provided a non-zero number of candidates remain from the 
OI edge map, the system further refines the set through 
analysis of skin distribution, geometrical extent ratio, 
horizontal span deviation, shape similarity energy and 
other features. 

Finally, the threshold map is updated again using the 
information obtained from the earlier analysis steps.  

The remainder of this paper describes the image 
processing approach of our system in greater detail.  
Section 2 discusses temporal and spatial techniques used 
to extract motion information. Section 3 investigates 
various edge detection methods and introduces the OI edge 
map construction algorithm. Section 4 deals with color 
analysis for skin tone distribution. Algorithms for shape 
and feature analysis are reviewed and discussed in Section 
5 and in Section 6 experimental results and conclusions 
are presented. 

2 Segmentation 
To extract motion data from the video sequence and 

identify objects of interest (OI), both temporal and spatial 
segmentation operations are applied.  Temporal 
differencing is used to measure change between a current 
and reference image. The reference image, R(x,y), is 
subtracted from the current frame, F(x,y), and the result is 
thresholded by T to obtain a binary difference map, D(x,y), 
as follows: 
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The difference between pixels is typically measured as 
a Euclidean distance in RGB space.  

The reference image can be defined in several ways. A 
common approach uses a static background without any 
subjects in the scene [10, 11, 12]. However, given our 
exclusive interest in observing students' arms, we find it 
more appropriate to utilize the inter-frame difference 
directly, i.e., each frame uses its previous frame as a 
reference. As an example of this approach, Figure 3 
includes the results of two frame differences, in which the 
raised hands of students A and B can be segmented 
clearly. Note that in the difference map generated by 
frames t-2 and t-1, a blob is formed as student A lowered 
his hand.  However, this will be discarded by our 
recognition algorithm in a later stage. 

A key step in temporal differencing is the selection of 
an appropriate threshold, which may vary from pixel to 
pixel, and should be updated dynamically, in response to 
lighting variations over time.  It may be assumed that 
intensity changes continuously and statistically, suggesting 
that we compute the threshold map, tT  from a sequence of 
N previous frames { }11 ,...,, −+−− tNtNt FFF . Between these 
frames, the differences of RGB components are calculated 
to find the largest span:  
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where X  takes on the respective values of R, G, and B 
components in turn. The threshold at pixel ),( yx  is then 
determined by: 

2),(2),(2),(4826.1 yxlByxlGyxlRK ++  

as suggested by Levine [1], where 1.4826 is a normalizing 
factor of Gaussian distribution, and K  is a balance 
coefficient, which we choose to be 1.2 based on 
experimental results. Figure 3 illustrates the difference 
image obtained using an adaptive threshold map.  

Since the difference image is generally noisy with 
highly irregular edges, morphological filtering, including 
erosion and dilation, is typically employed to reduce small, 
noisy blobs, fill in holes within OIs, and smooth 
boundaries [2]. Figure 3(d) illustrates the result of a single 
erosion followed by two dilations to the difference  image. 

           (a)               (b) 

(c)          (d) 
Figure 3. Temporal differencing (a) reference frame; (b) 
current frame; (c) difference frame with adaptive 
threshold; (d) output image after morphological 
operations. 

With the difference image now significantly cleaner, a 
region labeling algorithm is used to assign a unique label 
to each OI, using a connected component operator [3] in 
the building block. An example is provided in Figure 4, in 
which the resulting candidate OIs are enclosed by 
bounding boxes. 

      (a)               (b) 
Figure 4. OI labeling (a) original frame; (b) candidate 
OIs. 

3 OI edge construction 
With the location of the OIs now defined, we turn to 

the problem of shape classification by edge extraction.  
The raw edges are obtained by application of a Canny 



 

edge detector, based on derivatives of gray level intensity 
I, obtained from (R, G, B) tuples by  

BGRI 114.0*587.0*299.0 ++= . 
To obtain a cleaner map of the desired outlines, we take 

advantage of the observation that edges due to a noisy 
surface are usually weaker than object boundaries.  Thus, 
we downscale the grayscale image before edge detection 
in order to remove these weak edges, as shown in Figure 
5. 

Figure 5. Canny edge detection after downscaling the 
original image by 0.7, with Th = 150 , Tl = 1 and σ = 1.2. 

In order to focus our attention on those edges indicative 
of change in the scene, we generate an OI edge map, Pt by 
applying a logical AND operation on the Canny edge map, 
Et and the binary difference map, Dl: 
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In the event that an arm movement between two 
successive frames is relatively small, or the individual’s 
clothing color is similar to the background, the edges of Pt 
are likely to be broken into multiple, small fragments. To 
combine these, we must apply more dilation operations, 
taking care not to introduce unintended edges. As one such 
precaution, we do not dilate edges along the horizontal, 
since a raised arm generally has a non-horizontal slope. 
The process of integrating fragments of OIs and 
combining their associated bounding boxes is illustrated 
below in Figure 6. 

       
(a)    (b)    (c) 

   
(d)    (e)     (f) 

Figure 6. OI edge recovery (a) original object; (b) 
primary edges from Canny operator (c) fragmented OIs 
from temporal change detection; (d) fragmented edges 
of OIs; (e) integrated OI after recovery operation, in 
which dilation is applied to the edges of 8d following 
the outlines of 8b; (f) recovered edges. 

4 Skin tone identification 
Assuming that the background wall color of a typical 

classroom is relatively different from that of flesh tones 
[4], the use of skin distribution information within the 
edges of the OIs could be helpful for human arm 

recognition. We use a predefined-range method [4, 9] over 
a normalized RGB space to define the range of skin color 
distribution. Sample results are illustrated below in Figure 
7. 

Since the algorithm has already isolated the edges 
corresponding to OIs, we need only analyze the color of 
pixels within their defined boundaries. In this example, we 
were fortunate to have several students wearing short 
sleeves, thus presenting good skin color data. In general, 
however, we can only rely on students’ hands being 
exposed. 

(a)        (b) 
Figure 7. Skin detection results; (a) original image, (b) 
matching pixels in normalized RGB space. 

5 Shape and feature analysis 
From the skin map, a skin edge map is extracted 

indicating the outlines of the skin blobs.  Next, the 
thinning algorithm described by Stentiford, is applied, to 
compute the medial axis of the skin outlines using a 3×3 
template [5].  Taking into account the specific shape of our 
targets, we note that knowledge of the object boundary is 
sufficient to produce a skeleton. The outline is smooth, 
relatively noise-free, and tends to have a monotonically 
increasing or decreasing spatial distribution; furthermore, 
the width varies gradually and smoothly. Thus, the 
skeleton can be approximated reasonably by a straight line. 

Our algorithm raster scans the image, matching all 
boundary points with Stentiford’s templates, selecting 
target points according to the following criteria: 
1. The span, or column separation between two target 

points on the same row is within an appropriate range, 
for which the average is defined by a dynamic 
parameter, w0, adjusted according to spans already 
accepted. 

2. Boundary points tend to maintain a stable orientation. 
Figure 8. Orientation criteria for selecting target points. 

For example, a left boundary point (A in Figure 8) at 
position (i, j) constitutes a member of a span with tangent 

090<φ . Thus the left boundary point on the next scan line 
should be near B at position (k, j+1) (k<i) in order to keep 



 

φ  relatively unvaried.  Further, the right boundary point C 
on this row is also selected according to its relative 
position with B, while candidates D and E are rejected, 
according to our selection criteria.  This can be seen in 
Figure 9, in which the rows where the student’s hand and 
head are connected in the skin map are excluded from the 
medial axis computation.  This helps avoid an erroneous 
computation of the center. 

Similar to Baruch [6], we extract skeleton candidates as 
the middle pixels of these boundary points, taken on the 
same row, as illustrated in Figure 9.  

Figure 9. Voted medial axis candidates (cross-hatches 
in figure on right). 

Although these candidates do not fully represent the 
object’s skeleton, they are sufficient to construct an 
approximate medial axis using line regression. Most 
importantly, unlike other skeletonization methods, this 
algorithm needs to perform only a single raster scan, 
which is critical for efficient operation. 

Once the medial axis is constructed, we estimate the 
slope of the arm using the linear function y = ax + b.  As 
the simple least squares regression methods are not robust 
to outliers, we consider the use of LTS or LMS [7], but 
favor the less costly Hough transform [8]. 

The orientation and four extent ratios are calculated for 
our OIs and used as constraints against valid arm poses.  
Orientation is represented by the slope of the extracted arm 
skeleton, which, for a completely raised arm, is typically in 
the range of [450, 1350].  The extent ratios (expressed as 
height/width) are measured for the bounding box, the 
primary difference blob, the skin tone region, and the 
geometric outline of the OI. 

Figure 10. Geometric ratios for skin tone and outline. 

The geometric ratios are illustrated in Figure 10, in 
which w is the median horizontal width and ø is the 
orientation angle. The actual width and length of the object 
can be approximated as wsin ø and h/sin ø, respectively, 
assuming non-horizonal orientation of the arm. Thus the 
length/width ratio is: Λ= 

φ2sinw
h  

 
Based on our assumption of smoothness, the variance 

of horizontal span of an arm should be fairly small.  We 

use the statistical standard deviation to measure the 
smoothness: 
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where  µ is the mean of {xi}. 
Since the line segments obtained by the methods of 

Section 3 include some unwanted interior edges, we now 
sweep the constructed arm edges to remove invalid outline 
candidates, whose separation exceeds the standard 
deviation by some empirically determined threshold.   Any 
gaps along the orientation of the retained candidates are 
filled to preserve continuous segments, which may then be 
approximated by parallel lines, symmetric about the 
medial axis.  This process is illustrated in Figure 11. 

 (a)            (b) 

(c)            (d) 

(e)  

Figure 11. Detection of outline candidates (a) original 
image; (b) OI’s edges; (c) candidates after removal of 
pairs exceeding threshold of standard deviation; (d) 
reconstructed outlines; (e) simplified model 
representation with parallel lines on sides of medial 
axis. 

Similar to the snake method [13] we can measure the 
quality of fit of our simplified model to the actual outlines 
using their mutual attraction energy, defined as the average 
of the squared Euclidian distance between the outline 
pixels and the parallel lines of the model.  

In order to evaluate the likelihood that our parallel line 
model represents an actual arm outline, we consider two 
factors. First, the energy terms must be reasonably small 
and the percentage of outlier pixels among the overall 
candidate set should be low. Second, based on our 
assumption of symmetry about the media axis, the energy 
terms of the left and right outlines should also be 
symmetric. 

6 Results and conclusions 
Two examples of our algorithm in operation are 

provided in the figures below, illustrating  detection of 
multiple targets (Figure 12) and successful rejection of a 
distracter (Figure 13). 

 

(a)           (b) 



 

(c) 

Figure 12. Test of multiple targets (a) original scene; 
(b) OIs; (c) detected targets. 

Under conditions in which the arm is largely covered 
by clothing of similar color to the background, it is 
difficult for the skin-tone detector to isolate regions of 
movement, thus leading to small difference blobs. 
However, in combination with outline analysis, it remains 
possible to detect a raised arm, provided a sufficient area 
of skin from the hand is observed. 

     (a)            (b) 

Figure 13. Test of distracter rejection: (a) the distracter 
(the student in the center of the image) has just 
appeared in the scene (b) detected targets. 

Our experimental results yield a correct recognition rate 
of approximately 80% and a false positive rate of 20%.  
The latter are generally due to unexpected actions, such as 
a student standing up or walking, and environmental 
factors such as the occasional similarity of a background 
color to skin tone.  To reduce the occurrence of false 
positives, we could enforce a minimum on the size of 
subjects in the frame, as smaller subjects are more difficult 
to detect reliably. A second improvement would be the 
construction of a more complex skin color model in order 
to minimize the influence of environmental effects. 

At present, the system performs adequately in detecting 
most hand raising events under various test scenarios, 
although, there is obvious room for improvement before it 
can be used reliably as a communication assistant in 
remote lecturing applications. An additional area for future 
work would be to automate the determination of 
algorithm-specific thresholds that are sensitive to focal 
length and view angle.  Finally, our ongoing efforts aim to 
incorporate tracking and motion analysis for camera 
control, so that the camera can zoom automatically to a 
student with a question. 
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