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ABSTRACT
Dense depth maps, typically produced by stereo algorithms, are essential for various computer vision applications.
For general configurations in which the cameras are not necessarily parallel or close together, it often proves
difficult to obtain reasonable results for complex scenes, in particular in occluded or textureless regions. To
improve the depth map in such regions, we propose a post-processing method and illustrate its benefits to
applications such as 3D reconstruction or foreground segmentation of a user in a scene.
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1 INTRODUCTION

Stereo matching algorithms are an extensively studied
topic in computer vision. Dense depth maps produced
by these algorithms constitute the basis for many ap-
plications including 3D reconstruction, image-based
rendering, and scene segmentation. Problems arise,
however, in regions of occlusion or lacking texture.
Using smoothness constraints, many stereo algorithms
treat such regions as having the same or similar depth
as neighboring areas, often causing objects to ap-
pear larger or wider, an obviously undesirable ef-
fect. Various algorithms have been developed to ad-
dress this problem. For example, Kanade and Oku-
tomi [Kan94, Oku93] use adaptive windows or multi-
ple cameras, and Scharstein and Szeliski [Sch96] ag-
gregate support in stereo matching by nonlinear diffu-
sion instead of using an explicit window. Belhumeur
and Mumford[Bel92], Intille and Bobick [Int94], and
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Geiger et al.[Gei92] incorporate occlusion informa-
tion directly into their stereo matching algorithms by
Bayesian methods and use dynamic programming for
optimization. Gambleet al [Gam87] integrate discon-
tinuity information and depth information by a cou-
pled Markov random field model. More elegant meth-
ods adopt a global strategy and use graph cuts to min-
imize the energy, which can consider such situations
explicitly [Boy01, Kol01, Roy98]. A more detailed
analysis of many stereo algorithms can be found in
Scharstein and Szeliski’s paper [Sch02]. Although
these approaches solve the problem to a certain ex-
tent, they are insufficient to address the complexities
of general scenes, such as that illustrated in Fig. 2.
Further, while many algorithms consider the binocu-
lar case, they cannot be extended toN(≥ 3) cam-
era problems, employing a generic configuration. For
such cases, rectification may be difficult, if not impos-
sible, and the range of disparities can be very large.

Improvements to the depth map can be obtained
through filtering or interpolation. For example, me-
dian filters or morphological filters can fill small gaps
and correct depth errors (e.g. [Schm02]), but their abil-
ity to do so is rather limited. Linear interpolation
techniques (e.g. [Kau01]) can fill gaps along epipo-
lar lines or scanlines when images are rectified. The
drawback is that these methods use only the informa-
tion along one line, which may be difficult to estimate
correctly when the epipolar geometry is complicated.
Furthermore, such interpolation methods do not con-



sider the information provided by other neighboring
areas. Notwithstanding these efforts, we suggest that
further improvements to the depth map may be ob-
tained through post-processing.

The technique we propose here, inspired by Perona
and Malik’s work on edge detection [Per90], can be
applied to a depth map produced by any stereo match-
ing algorithm. It utilizes neighboring information in
a natural manner through nonlinear diffusion, filling
large gaps while maintaining sharp object boundaries.
The main difference between Perona and Malik’s work
and ours is that we use the gradient of the original
image rather than that of the depth image. Hence,
discontinuities in depth are assured to be consistent
with intensity discontinuities, often a desirable prop-
erty [Gam87]. Assuming that object shapes rarely vary
dramatically apart from boundaries, this technique can
eliminate many errors caused by textureless regions or
occlusions.

The remainder of this paper is organized as follows.
In Section 2, a generalized multi-baseline stereo is
presented, which is used to produce all of our sam-
ple depth maps. Section 3 describes our method for
improving depth maps by nonlinear diffusion, Section
4 discusses several applications that can benefit from
such an improvement, and finally, some questions and
directions for future research are discussed in Section
5.

2 GENERALIZED MULTIPLE-
BASELINE STEREO

Okutomi and Kanade [Oku93] proposed a multiple-
baseline stereo algorithm that applied to parallel cam-
eras (i.e., there are only horizontal disparities). For a
general camera setup, images must first be rectified,
which usually requires a re-sampling of the images,
during which some information may be lost. Here, we
generalize the Okutomi and Kanade algorithm to deal
with an arbitrary camera configuration.

First, we assume that all cameras are calibrated, for
example, using Tsai’s method [Tsa87]. The parame-
ters of camerai are represented byMi. Knowing the
center of projection for the camera, we may compute
the rayr passing through the center and a given pixel
p = (x, y) in the image. If one dimension is known of
the real world pointP = (X, Y, Z) corresponding to
the pixelp, for example, if we knowZ = c, then we
can compute the 3D position ofP by intersection of
ray r with the plane atZ = c, and from this, we may
also compute its projection in the image planes of the
other cameras, as shown in Fig. 1, whereCi, Cj are
centers of projection for camerai, j, respectively.

Supposeq = q(p, Z,Mi,Mj) is a function relating
pixel p in camerai to pixel q in cameraj. Given

Figure 1: Scene point computing and reprojection

that the sum of squared differences (SSD) between two
corresponding regions in an image pair can be used to
measure similarity between these images, the sum of
SSD (SSSD) over all image pairs may be used to de-
termine the depth.

SSSD(p, Z) =
∑
i 6=j

∑
p′∈Np

(Ii(p′)

−Ij(q(p′, Z,Mi,Mj)))2 (1)

whereNp is the neighborhood of pixelp, Ii(p) is the
intensity of pixelp in camerai.

We take camerai as a reference and compute the sum
of SSDs between the images obtained by camerai and
all other cameras. The best depth estimate for each
pixel p is the value ofZ that minimizes theSSSD:

Z(p) = argminZSSSD(p, Z) (2)

For best results,Z should be discretized as finely as
possible subject to computational constraints.

Unfortunately, this approach yields unsatisfactory re-
sults, as illustrated in Fig. 2 with three cameras. The
original images are pictured in the first column and
their corresponding depth maps in the second. While
the results are generally reasonable, there remain many
errors, typically visible as bright points and black
holes on the body, caused by occlusions, textureless
regions, repeated patterns, and depth discontinuities.

3 POST-PROCESSING DEPTH MAPS
BY NONLINEAR DIFFUSION

If two nearby pixels are in the same region or be-
long to the same object, their respective depths should



Figure 2: Original camera images (left column) and
their corresponding depth maps (right column).

be similar. One way to achieve this smoothness con-
straint is to apply a weighted averaging, such as Gaus-
sian smoothing, to the depth map. Unfortunately, such
techniques also tend to blur boundaries, a problem we
would like to avoid. Borrowing from Perona and Ma-
lik [Per90], who suggested an anisotropic diffusion
method to improve edge detection, we apply the same
technique to depth maps. Consider an updating func-
tion:

Z(x, y)t = Z(x, y)t−1 + λc(x, y, t) · 5Z (3)

whereλ is a constant for numerical stability1 and5Z
indicates nearest-neighbor differences. To achieve the
desired effect, the coefficientc(x, y, t) should be high
in the interior of each region, low at boundaries, and
should have a steep threshold between the two cases.
We note that the gradientG of the intensity image
tends to large values along edges and small values in
interior regions. Thus, an excellent choice forc is a
function that responds maximally to low values of gra-
dient, i.e.c(x, y, t) = f(G), wheref(·) takes on some
shape approximating that shown in Fig. 3, for example,

f(G) = e−(‖G‖)/K)2) (4)

or
f(G) = (1 + (‖G‖/K)2)−1 (5)

Eq. 5 is used here, which favors wide regions over
smaller ones [Per90]. Unlike Perona and Malik’s ap-
proach [Per90], we smooth the depth map based on

1For the results illustrated in this paper, we use a value ofλ =
0.25

Figure 3: The qualitative shape off(·).

the gradient of the original intensity image rather than
that of the depth map itself. In this manner, we incor-
porate edge information into the depth map so as to
recover the regions of occlusion. Through an iterative
update as described by Equation 3, the depth map can
be smoothed as desired, with significant improvements
to the resulting depth map, as illustrated in Fig. 4. The
depth errors, seen as holes in the subject’s body and
bright points near boundaries, are gradually smoothed
out, while the boundaries are kept sharp. The main dis-
advantage of such an iterative method is computational
cost. For this example of a 320x240 resolution image,
our implementation required a total running time of
approximately 3.6 seconds under Matlab on a Pentium
III 1.1 Ghz machine. The iteration process stops either
after a certain number of iterations or when the sum of
depth changes over all pixels from one iteration to the
next is below some predefined threshold.2

(a) (b)

(c) (d)

Figure 4: Results of nonlinear iteration diffusion:
a)original depth map, b) after 10 iterations c) after 20
iterations, c) after 200 iterations.

2In the example shown here, the threshold was equivalent to a
mean depth difference of 0.01.



4 APPLICATIONS
In this section, we summarize two important appli-
cations of our nonlinear diffusion technique for im-
proved depth maps, namely, 3D scene reconstruction
and background removal.

4.1 3D scene reconstruction
Starting from an intensity image and a corresponding
depth map, it is possible to synthesize a novel view
from a nearby viewing position, as illustrated in Fig. 5.
Given the parameters of a virtual camera, the 3D posi-
tion corresponding to a pixel can be computed from its
position and depth. A surface can then be polygonized
as described by Kanadeet al. [Kan97]. A mesh (two
triangles) is constructed, using the 3D coordinates of
four neighboring pixels as the vertices of the triangles
and the texture is obtained from the corresponding in-
tensity map.

Due to estimation errors, discontinuities in the depth
map, and the displacement between the virtual cam-
era and the reference camera, some artificial surfaces
typically appear in the synthesized view, as shown in
Fig. 5a. These can be eliminated by adding smooth-
ness constraints, that is, the mesh will not be rendered
unless the depths of the three vertices of a triangle are
similar. Unfortunately, this results in the appearance of
holesin the image, as seen in Fig. 5b, 7d,g. However,
using our improved depth map, as described above, the
result appears to be improved greatly, as pictured in
Fig. 5c,7e.

4.2 Background removal
In virtual reality and immersive telepresence applica-
tions, it is of critical importance to extract foreground
objects (typically people) from the background. Since
the background may change dynamically, it is often in-
feasible to perform such segmentation based on a 2D
reference image, such as that employed by bluescreen
techniques [Smi96]. Instead, we wish to perform this
task based on 3D information from a CAVE-like envi-
ronment. Captured images typically contain two per-
pendicular screens as background, which we can rep-
resent by the planesX = 0 andY = 0. Since the envi-
ronmental geometry is relatively simple, 3D scene in-
formation can be estimated from the depth map easily
and we can then separate objects from the background
by thresholding based on depth estimates. Sample re-
sults are illustrated in Fig. 6, 7f,g.

Due to the estimation errors of the original depth map,
the segmented images in Fig. 6a and 7f include some
portions of the background and some holes in the fore-
ground. Using the improved depth map, instead, the
results, pictured in Fig. 6b and 7g, are significantly im-

proved, although still imperfect. The remaining prob-
lems are due to the fact that the diffusion effect is de-
termined by image gradient information, which may
not be consistent with the scene geometry. In Fig. 6
and 7, the background consists of planar screens, but
the corresponding gradients are not flat because of the
complex projected images appearing on them. We note
that this situation is likely to pose problems for many
stereo matching techniques, making use only of the
visible light spectrum. As a result, occlusions still pro-
duce some artifacts near object boundaries, which can-
not be removed entirely by diffusion. Due to the dif-
ficulty of tuning the diffusion process, smoothing over
boundaries may still occur, thereby resulting in the oc-
casional depth error.

5 DISCUSSION
We have demonstrated that depth maps can be im-
proved by nonlinear diffusion techniques, reducing
the problems caused by textureless regions and oc-
clusions. Since the post-processing step of the algo-
rithm is based simply on image gradient information,
the method may be applied to the benefit of a wide
range of applications.

However, it is clear that nonlinear diffusion is not
a panacea. The amount of improvement possible to
the depth map is limited by the initial quality of the
stereo matching algorithm; errors in the initial depth
estimates tend to be propagated during the diffusion
steps. Thus, it would be useful to have some method of
evaluating the quality of the initial depth map. While
no reliable measurements exist to evaluate the quality
of stereo matching results, certain cues may be use-
ful. For example, Scharstein and Szeliski [Sch96] pro-
posed a disparity certainty measure for each location
based onwinner marginor entropy, which may be
used to estimate an overall certainty. Such certainty
measures can be used to determine automatically the
need for a post-processing step and might be able to
suggest an earlier stopping criteria for the nonlinear
diffusion iteration. A similarity score (e.g. NCC) of
a pixel can indicate the confidence of a match, i.e.,
the correct match should have a high score, although
the converse is not necessarily the case. Egnalet al
[Egn02] suggested a stereo confidence metric based
on such cues. An improvement to our method may
be obtained by weighting areas based on the degree
of confidence in the corresponding area of the original
depth map, thus reducing the influence of errors in the
initial depths. Another issue affecting performance is
the choice of a betteredge-stoppingfunction than the
one currently used (Eq. 5). For example, Blacket al.
[Bla98] analyzed anisotropic diffusion in a statistical
framework and related this technique to robust estima-
tors and regularization with a line process. In our con-



(a) (b) (c)

Figure 5: A novel synthesized view a)based on the original depth map b) with the addition of smoothness con-
straints c) using the improved depth map of Fig. 4d, generated by nonlinear diffusion.

(a) (b)

Figure 6: Segmented images based on a) the original depth map, b) the improved depth map from Fig. 4d.

tinuing research, we hope to develop such ideas fur-
ther.
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