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Abstract

A technique for increasing the frame rate of CMOS video
cameras is presented. The method uses the non-destructive
readout capabilities of CMOS imagers to obtain low-speed,
high-resolution frames and high-speed, low-resolution
frames simultaneously. The algorithm translates the pix-
els of the full resolution images with respect to the motion
dynamics observed in the low-resolution frames and cor-
rects the result as necessary for consistency with the
low-resolution frames. Noting that due to the longer expo-
sure time required, high-resolution frames are more prone
to motion blur than low-resolution frames, and thus, a mo-
tion blur reduction step is also applied. Simulations
demonstrate the ability of our technique in synthesiz-
ing high-quality, high-resolution frames at modest compu-
tational expense.

1. Introduction

In order to generate a video frame, imaging devices ac-
cumulate photons over a 2D matrix of light sensors, whose
number determines the maximum achievable resolution of
the camera [4]. The exposure (or integration) time of a sin-
gle frame must be chosen so that each such sensor receives
a suf£cient number of photons to allow for a statistically ac-
curate measure of the light intensity at its location. This is
partly dependent on the surface area of the sensor. A phys-
ically smaller element requires a proportionately longer ex-
posure time to produce a usable image, which, in turn, de-
termines the maximum frame rate that can be achieved by
a camera; shorter exposure times allow the video device to
produce frames at a higher rate. One approach to reducing
the exposure time is to increase the size of the lens in or-
der to focus a greater number of photons onto the matrix of
light sensors. However, this entails increasing the physical
size of the camera and is not well suited for applications re-
quiring near-£eld focus, as this may result in image distor-

tion. Another solution is to employ an auxiliary light source
to illuminate the scene. This may be limited only to cer-
tain applications where additional illumination is both fea-
sible and acceptable.

To increase the frame rate at high resolution of CMOS
image sensors, we propose using their non destructive read-
out capabilities to simultaneously generate high-resolution
frames H at frame rate h and low-resolution frames L at
frame rate l, as depicted in Figure 1. Since low-resolution
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Figure 1. Synthesis of high-resolution video
at frame rate l from low-resolution video at
frame rate l and high-resolution video at
frame rate h.

frames involve the accumulation of incident photons over a
larger sensor surface for each pixel and, thus, require less
time to integrate than high-resolution frames, the frame rate
l of the low-resolution sequence is naturally higher than
h. The high- and low-resolution frames represent the same
scene and are used respectively to capture high-frequency
details and object motion. Our method applies an image-
processing algorithm to both sequences of frames H and
L in order to synthesize a high-resolution video sequence



S, at high frame rate l, containing the detail of the high-
resolution frames H and the motion dynamics of the low-
resolution frames L.

A motion evaluation algorithm is used to evaluate pixel
motion in a coarse manner between the last interpolated
(synthesized) high-resolution frame St−1 and the current
low-resolution frame Lt generated by the camera. The tech-
nique takes advantage of a subsequent correction process
to reduce the computational cost of the motion evaluation
step without excessively degrading the quality of the syn-
thesized frames. The result is an interpolated frame con-
taining mostly high-resolution and some low-resolution fea-
tures. The latter, which are smoothed by simple interpola-
tion, tend to appear when abrupt motion occurs in the scene.
Because high-resolution frames require a longer exposure
time, these are more sensitive to motion blur and thus, the
algorithm includes a step to reduce blur to a level equiva-
lent to that of the low-resolution frames.

2. Previous Work

A great amount of work has been performed on a related
problem, that of synthesizing high-resolution images from a
set of low-quality, low-resolution ones by using the redun-
dant information contained in the latter. A review of such
super-resolution techniques is presented by Borman et al
[1]. These can be divided into frequency domain [13][9][6]
and spatial domain methods [10][12][3]; the former tend
to be simpler and are preferred for applications involving
global translation motion, which may happens for example
when the camera moves laterally. Spatial domain methods,
however, are better suited for general video sequences that
may contain local motion.

Elad and Feuer [3] proposed a technique based on adap-
tive £ltering theory, using a time and space £lter that oper-
ates on a set of low-resolution images. The restoration pro-
cedure solves a large set of sparse linear equations to pro-
duce a sequence of images at higher resolution. This tech-
nique depends on prior evaluation of motion between low-
resolution frames. Shechtman et al [11] extended the notion
of super-resolution to the space-time domain. Their method
combines several video sequences of different resolutions
and frame rates in order to produce a single video sequence
of better quality. A trade-off between spatial and tempo-
ral resolution is achieved in the sense that increasing one
is done at the expense of the other. A particular case of their
method consists of using a low-resolution video sequence
with two high-resolution images in order to produce a high-
resolution video sequence. This application is closely re-
lated to that presented in this paper.

3. Frame Acquisition Model

A camera produces a video sequence by capturing im-
ages of a scene at regular time intervals, which de£ne the
frame rate. The image receptor area of a digital imaging de-
vice is made up of a 2D array of light sensor elements called
photosites. Each photosite converts incident light into pho-
tocurrent iph(t), whose intensity corresponds to the value
of the corresponding pixel. However, as photocurrent is too
small to be measured directly, a digital camera cannot in-
stantaneously capture the content of a scene; instead, the
photocurrent must be integrated onto a capacitor and the
charge Q(t) read out at the end of the exposure time T .
The amount of charge accumulated in a photosite is a lin-
ear function of the incident illumination intensity and the
integration period.

The light sensitivity of a photosite depends on the size
of its reception surface; a smaller surface is less sensitive
and thus, requires a greater minimal exposure time, Tmin,
to produce a pixel at a certain light intensity. If the charge
accumulated at a photosite is read after a shorter exposure
time, for example, t = Tmin

4 , the value will not be reli-
able. However, if the capacitor values for adjacent photo-
sites are added by groups of four, thus corresponding to vir-
tual photosites whose reception surface is four times larger,
the summed values would be suf£cient to produce a reli-
able low-resolution frame. This technique is, in fact, used
in some multiresolution video devices [5][16], which can
be programmed to generate frames at different resolutions.
These devices can increase their light sensitivity at the cost
of resolution. Therefore, by adding the values of adjacent
pixels, it is possible to generate a low-resolution frame ev-
ery Tmin

n
and a high-resolution frame every Tmin time pe-

riod, where n gives the number of high-resolution pixels
that are combined to produce a low-resolution one. For the
purpose of illustration, we will continue to assume a value
of n = 4 for subsequent discussion. As a result, the high
frame rate will correspond to quadruple that of the origi-
nal high-resolution frame rate provided by the camera.

An object moving within the scene during the expo-
sure period spreads its light information over many photo-
sites, which produces a motion blur effect. Obviously, the
longer the exposure time, the stronger the effect. As the
time required for the acquisition of a high-resolution frame
is approximately four times that for a low-resolution one,
the captured high-resolution frames are more prone to mo-
tion blur, as illustrated in Figure 2. The £rst row shows
four low-resolution frames that were captured successively
by the video camera, using an exposure time of Tmin

4 for
each, while the second row shows the acquisition process
of the equivalent high-resolution frame at different stages,
each corresponding to the end of the exposure of the low-
resolution frame above it. By the time we complete the ex-
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Figure 2. Sensitivity to motion blur as a func-
tion of the exposure time.

posure of the high-resolution frame at t = Tmin, this image
has accumulated four times the amount of blur of one low-
resolution frame. Since our technique translates pixels of
captured high-resolution frames in order to synthesize suc-
cessive frames, sensitivity to motion blur in the synthesized
frames will also correspond to an exposure time of Tmin,
rather than Tmin

4 . Ideally, we would like to avoid these prob-
lems of motion blur.

Liu et al [8] present a method that uses special video
hardware capable of capturing many images within a nor-
mal exposure time and takes advantage of the extra in-
formation provided by these underexposed images to help
reduce the level of motion blur in the generated frames.
Figure 3(a) represents the charge accumulation in a pho-
tosite when light intensity does not vary during the expo-
sure time; in this case, one can assume that no motion oc-
curs, since the slope, i.e. the photocurrent, is constant. On
the other hand, Figure 3(b) indicates the effect of motion on

PSfrag replacements

Q(t)

t

0 τ 2τ 3τ Tmin

(a)

PSfrag replacements

Q(t)

t
0 τ 2τ 3τ Tmin

(b)

Figure 3. Effect of scene motion on the pho-
tocurrent. (a) no motion. (b) motion.

photocurrent. Under such conditions, an accurate measure
of photocurrent at the beginning of the exposure time cannot
be obtained from Q(Tmin). Instead, Liu uses the different
values of Q(t) measured during an exposure to estimate the
photocurrent at the beginning of the exposure time (t = 0).
His method determines whether motion has occurred during
the exposure by examining the general shape of the integra-

tion curve. If motion is detected, the point tm correspond-
ing to the beginning of motion is identi£ed. For example,
in the case of Figure 3(b), tm = 2τ . Then, only the infor-
mation from t = 0 to t = tm is used to estimate the pho-
tocurrent at the beginning of the exposure. Otherwise, all
the points are used to produce the estimate, in which case,
the accuracy is improved.

For the purpose of reducing blur in the high-resolution
frames produced by our special video device, we are in-
terested in the value of the photocurrent at t = 3τ , as it
corresponds to the beginning of the integration time of the
ideal high-resolution frame we attempt to reconstruct. Us-
ing a similar approach to Liu et al, we can estimate this
value and thus, reduce motion blur in the generated high-
resolution frames, as shown in Figure 4.

(a) (b)

Figure 4. Motion blur reduction in a high-
resolution frame. (a) Frame affected by mo-
tion blur (b) Frame after motion blur reduc-
tion.

4. Estimate-and-Correct Method

The strategy used to synthesize the high-resolution frame
St involves translating the pixels of the previous frame St−1

with respect to motion observed at low resolution. The prob-
lem with this approach is that motion cues alone are insuf£-
cient to describe the scene changes between the two frames.
As an extreme example, if the scene contains a video dis-
play that changes from white to black, it would be impossi-
ble to move the white pixels in St−1 to produce black ones
in St. Clearly, the quality of motion evaluation depends on
the nature of scene changes; when object motion is rapid or
cannot be expressed as a simple translation, it may be im-
possible to synthesize St from St−1 alone. Furthermore, the
computational expense of the necessary motion estimation
generally increases with the complexity of motion dynam-
ics within the scene.

For these reasons, our method £rst produces a coarse es-
timate Et of the high-resolution frame St by translating the
pixels in St−1 for which the motion dynamic can be com-
puted ef£ciently at low resolution. A second step is then



performed, which corrects the estimate Et by patching it
locally with low-resolution information. This approach al-
lows an ef£cient computation of the next frame St without
expending an inordinate effort on areas of the scene that do
not exhibit simple motion characteristics. The method actu-
ally performs a trade-off between temporal and spatial ac-
curacy. That is, high-resolution information will be lost in
areas where the motion evaluation is not obvious and thus
cannot be computed quickly, for example in areas of disoc-
clusion or at the edges of moving objects.

Figure 5 illustrates the application of our technique.

Estimate synthesis
and correction and correction and correction

Estimate synthesis Estimate synthesis

Motion blur
reduction
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Figure 5. Steps involved in the algorithm.

When the integration period of a high-resolution frame is
completed, this frame and its three underexposed prede-
cessors (dashed) are used to synthesize a high-resolution
frame with reduced motion blur in it. In other cases, the
estimate-and-correct method is applied between the cur-
rent low-resolution frame and the last synthesized frame.

A widely used method of evaluating motion between two
frames in a video sequence is the block matching algorithm
(BMA). Because of the wide distribution of MPEG video
encoding applications, this step can be performed by read-
ily available motion estimation hardware [7][14][15]. Based
on the assumption that each area of the current frame Ft

can be obtained from the translation of some correspond-
ing area in the previous frame Ft−1, the BMA partitions Ft

into equal-sized non-overlapping square blocks and £nds,
for each, the best matching block in Ft−1. The displace-
ments of these best-matched blocks are represented as vec-
tors, describing how the different parts of the scene moved
between the two frames. Because the motion representation
of all the pixels in a block is reduced to a single motion
vector, the evaluation computed by the BMA is necessar-
ily coarse. This may be problematic in some situations; for
example, when a block contains both the edge of a mov-
ing object and a portion of a static background, block mo-
tion cannot correctly translate the object pixels without af-

fecting the background as well.
The sum of squared-differences (SSD) may be used to

measure the quality of match between a pattern block at
position (x, y) in Ft and a candidate block at position
(x + u, y + v) in Ft−1:

SSD(x,y)(u, v) =
B−1
∑

j=0

B−1
∑

i=0

(

Ft(x + i, y + j)−

Ft−1(x + u + i, y + v + j)
)2

(1)

where the block size is B × B. The best matching block
(ub, vb) in Ft−1 is the candidate block that satis£es

(ub, vb) = arg min SSD(x,y)(u, v). (2)

The BMA is the most critical component of the high-
resolution video synthesis algorithm. Its ef£ciency is key
to reducing execution time [2] and its accuracy determines
the quality of the synthesized high-resolution frames. While
a full search BMA provides optimal results because it in-
spects every possible block within a search window, its
computational cost is prohibitive for real-time applications.
One way to accelerate the block-matching process is to re-
strict the search area to a small neighbourhood; thus the
number of potential candidates to examine for each pattern
block is reduced. Although this approach does not guaran-
tee a best match for each block, it can signi£cantly acceler-
ate the motion estimation step.

Figure 6 shows an example of the estimation step, in

(a) (b) (c)

Figure 6. Estimate synthesis by translation of
blocks (size depicted by a square). (a) St−1.
(b) Lt. (c) Et.

which a foot is moving backward (toward the left) in front
of the wheel of a chair. Figure 6(a) corresponds to the
high-resolution frame that was synthesized at time t − 1,
Figure 6(b) is the current low-resolution frame Lt, and
Figure 6(c) corresponds to the estimate Et, obtained by ap-
plying to St−1 the motion dynamic observed between St−1

and Lt. The estimate Et will typically contain artifacts sim-
ilar to those produced by a poor MPEG codec, mainly due



to the fact that it is not always possible to £nd an adequate
match in St−1 for each pattern block in Lt. For example,
observing the estimate in Figure 6, one notes that the lower
part of the wheel has been moved with the end of the boot,
as it was part of the same block in the BMA.

In order to reduce the visual effect of such artifacts, the
associated pixels are corrected by introducing some infor-
mation from a bilinearly interpolated high-resolution ver-
sion Bt of the current low-resolution frame Lt. Although
the interpolated version contains less detail than Et, it is
more accurate temporally, as it has been produced from the
current low-resolution frame Lt.

Therefore, the synthesis of the high-resolution frame St

actually consists of merging the estimate Et and an inter-
polated version of Lt. The idea is to give more importance
to Et when it is deemed to be an accurate representation of
the current state of the scene and less importance otherwise.
A simple way to verify whether an arbitrary high-resolution
image represents the same scene as a corresponding refer-
ence image at low-resolution is to subsample and compare it
with the latter. Thus, the relative weight given to Et and the
interpolated version of Lt is based on the quality of match
between the current low-resolution frame Lt and a subsam-
pled version E

′

t of the current high-resolution estimate Et,
which, for a given location (x, y) can be expressed by:

M(x, y) =
[Lt(x, y)− E

′

t(x, y)]2

K2
(3)

where K is a chosen constant, based on the maximum pos-
sible color component value, to scale the values of M(x, y)
to [0, 1]1. If the result of the comparison is close to zero,
the estimate is deemed to be a reasonable approximation of
the ideal high-resolution frame at that location and thus a
greater weight is given to it in the reconstruction process.
Conversely, if the squared difference is high, then a greater
weight is given to the current low-resolution image. The
merging process can be expressed by the following equa-
tion

St(x, y) =
(

1−M(x, y)
)

Et(x, y)

+ M(x, y)Bt(x, y) (4)

As such, estimate correction involves a trade-off between
temporal and spatial accuracy; substituting low-resolution
information in the region of an estimation error resolves
temporal problems but reduces spatial accuracy.

5. Experimental Results

To validate our approach to high-resolution video syn-
thesis, a qualitative comparison was performed between bi-

1 For example, if the pixel depth of the generated images is eight bits,
K should be set to 255, as this is the maximum possible value for the
difference between any two pixels.
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Figure 7. Comparison of the estimate-and-
correct algorithm with bilinear interpolation.

linear interpolation and our proposed method. Since the
mixed-resolution video hardware does not exist yet, its out-
put had to be simulated. A sequence of ideal high-resolution
frames was captured using a conventional £xed resolution
camera. Low-resolution frames, as well as underexposed,
blurred high-resolution frames were then generated from
these ideal frames. The mixture of high- and low-resolution
images was then provided to the algorithm as if it were a live
sequence from a mixed-resolution video camera. Figure 7
shows a comparison between bilinear interpolation and our
technique using the same example as in Figure 6. For space
reasons, results are presented for one frame of the sequence,
which represents a close-up of a foot moving in front of
a chair. Figure 7(a) shows the ideal high-resolution frame,
namely the original frame from which the low-resolution
frame in Figure 7(b) was simulated. This frame is not avail-
able for the algorithm and is presented here for comparison
purposes. Figure 7(c) shoes the frame synthesized by our
algorithm, which is actually the corrected version of Figure



6(c). Figure 7(d) presents the corresponding result obtained
using bilinear interpolation. Figure 7(e) and Figure 7(f) re-
spectively show the error in the frame synthesized by our
method and that in the frame produced using bilinear inter-
polation. These error maps were produced by taking the dif-
ference between the synthesized frames and the ideal frame
of Figure 7(a).

In this example, a signi£cant improvement in quality of
the frame synthesized by our algorithm has been observed
relative to simple bilinear interpolation. This improvement
is more perceptible in static areas, e.g. the wheel, in which
case the algorithm uses, almost exclusively, the information
provided by the spatially accurate high-resolution frame.
One can also note that the region in the center of the moving
foot is of better quality inside the frames synthesized by our
algorithm, as motion in this area was easy to evaluate be-
cause it corresponds to a simple translation of blocks of pix-
els. However, the detail level near the edge of the foot inside
the frame synthesized by our method is similar to that ob-
tained by the other technique. This can be explained by the
fact that the algorithm had dif£culties calculating the mo-
tion of blocks of pixels in these areas, and, therefore, gave
less importance to the high-resolution estimate in the recon-
struction process.

This example demonstrates that the quality of frames
generated by our algorithm is always greater than or equal
to the quality of those generated by simpler interpolation
techniques. This can be explained by the nature of our al-
gorithm, which falls back to bilinear interpolation when the
estimate step cannot offer improved results. Furthermore,
scene areas that exhibit a higher level of motion are more
dif£cult to reconstruct and therefore the quality improve-
ment of our algorithm over standard interpolation tech-
niques is insigni£cant. However, as the human visual sys-
tem is less sensitive to detail in areas of motion, this factor
should not be considered as a serious shortcoming.

6. Conclusions and Future Work

A new method for increasing the frame rate of video
cameras at high-resolution has been presented. The method
combines spatially optimal high-resolution information
with temporally optimal low-resolution information to ap-
proximate an ideal high-resolution representation of the
scene. The simplicity of the algorithm facilitates its hard-
ware implementation. While the bottleneck of the pre-
sented method is the motion evaluation step, the size of
the search window can be adapted to satisfy time con-
straints.

Future work includes the enhancement of the motion
estimation step in the estimate synthesis. Since the block
matching motion model assumes that all pixels in a given
block move together, the evaluation is necessarily coarse.

Although this technique is ef£cient, it yields reduced accu-
racy at zone boundaries exhibiting different motion charac-
teristics. This could be improved by re£ning the process in-
side those blocks overlapping a moving object and the back-
ground.
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