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Abstract
While a large number of vision applications rely on the
mapping between 3D scenes and their corresponding 2D
camera images, the question that occurs to most researchers
is what, in practice, are the most important determinants
of camera calibration accuracy and what accuracy can be
achieved within the practical limits of their environments.
In response, we present a thorough study investigating the
effects of training data quantity, measurement error, pixel
coordinate noise, and the choice of camera model, on cam-
era calibration results. Through this effort, we seek to de-
termine whether expensive, elaborate setups are necessary,
or indeed, beneficial, to camera calibration, and whether a
high complexity camera model leads to improved accuracy.
The results are first provided for a simulated camera system
and then verified through carefully controlled experiments
using real-world measurements.

1. Introduction
The broad use of camera calibration in computer vision mo-
tivates some questions which we believe have not yet seen
comprehensive investigation. Clearly, more accurate train-
ing data yield better calibration, the more salient issue is
what accuracy can be achieved within the practical limits
of most research environments. The impact of noise has
been studied by Lavest et al. [9] and Zhang [19], but their
real data experiments involved a small distance coverage in
3D space and did not use separate testing data to verify the
scalability of calibrated results. We aim to determine, by
using separate training and testing data through extensive
experimentation, what, in practice, are the most important
determinants of camera calibration accuracy. We presents
an empirical study of the impact of noise in world and pixel
coordinates, training data quantity, and distortion models on
calibration accuracy.

To demonstrate the effects of the above factors, two
of the most popular, representative and accurate meth-
ods are chosen as examples for experimentation. Tsai’s
method [16] represents a conventional approach that re-

lies on an accurate 3D coordinate measurement with re-
spect to a fixed reference and has been widely used in
multi-camera applications [8, 11]. In Salvi’s survey [12] on
conventional methods developed between 1982 and 1998,
Tsai’s method exhibited the best performance. In contrast,
Zhang’s method [20], not included in the survey, repre-
sents a newly-developed planar calibration approach, which
combines the advantages of both world-reference based and
auto-calibration approaches. This method is flexible in that
either the camera or the planar pattern can be moved freely
and easily repeatable without redoing any measuring task.
While we intend primarily to guide researchers in choosing
an appropriate calibration method based on their specific
accuracy requirements and laboratory resources, the results
may also provide insight into the design of a possibly im-
proved algorithm. Before presenting our results, we first
summarize previous literature on calibration.

2. Camera calibration methods
2.1. A brief review
Camera calibration has received increased attention in the
computer vision community during the past two decades
[5, 12]. Conventional world-reference based calibration re-
quires 3D world coordinates and corresponding 2D image
coordinates of feature points [4, 16, 18, 7, 12]. Some meth-
ods use geometric invariants, e.g. parallel lines and van-
ishing points, as features and may require special equip-
ment for measuring certain variables [2]. Implicit calibra-
tion methods [17] have no explicit camera model and could
achieve high accuracy, but they are expensive and do not
reveal the physical camera parameters. Auto-calibration
matches corresponding features in multiple uncalibrated
scene views [3, 6]. Due to the difficulty of initialization
[5], auto-calibration results tend to be unstable [1]. Pla-
nar auto-calibration [15] overcomes this difficulty because
planes are simple to process and allow reliable feature or
intensity-based matching. Zhang [20] extended this idea by
using the relative geometric information of planar feature
points. According to a singularity study [14], degenerate
situations can be easily avoided. Another extented planar
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Table 1: Transformations in Tsai and Zhang’s models.
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approach suggests the use of angles and length ratios but
provides no experiment results [10].

The choice of camera model [13], which differs mainly
in lens distortion, may also influence calibration results.
Tsai used the second order radial distortion model [16]
while Zhang adopted both the second and fourth order terms
[20]. Heikkilä employed two further decentering distortion
components [7]. Lavest et al. even added the sixth order
radial term [9]. Weng introduced a thin prism distortion
which could be merged into the decentering distortion [18].
Most camera models assume zero skewness, i.e., the angle
between

�
and  image axes is R GDS [16, 7, 18], but Lavest

[9] and Zhang [20] estimates skewness as a variable.

2.2. Methods chosen for experimentation
Both Tsai [16] and Zhang’s [20] methods use the pin-
hole camera model. Despite a slightly different formula-
tion for lens distortion, the mapping between world points,T � �VU � �WU � ��X

, and image points,
T � > U  > X , goes through the

same four coordinate transformations, as shown in Table 1.
The two methods differ mainly in their calibration al-

gorithms. Given the world coordinates in a fixed refer-
ence system and the corresponding pixel coordinates of Y
much larger than 7 [16] feature points, Tsai’s algorithm es-
tablishes an over-determined system of Y linear equations
based on the radial alignment constraint. Zhang’s calibra-
tion requires a planar pattern, which defines the

�  plane
of a changing world reference system, to be placed at var-
ious orientations in front of a camera. The algorithm first
computes a homography that maps Y feature points on the
pattern to their corresponding pixels in each view up to a
scale factor. Then given Z\[Q] views [20] of the pattern,
i.e., the Z homographies obtained above, the camera pa-
rameters are solved by Z pairs of linear equations.

2.3. Accuracy evaluation
For evaluating both training and testing accuracies, four of
the most frequently used methods [12] were adopted: the

Table 2: Accuracy evaluation methods.^ 6 
_*`ba `ced *�f T4g�"> cih �"> c X 3 � T4g > cjh  > c X 3lk2mn^ � 
$*` a `ced * �po g�jq �Br> c h �jq �Br> cts 3 � o g q �4r> c h  q �4r> c�s 3 ! mn^ q 0vu�w c rx 
y*`ba `czd *f T ��� c{h �(� ci|l} X 3 � T � � clh  � cv|l} X 3 � T � � c~hb��|p} X 3{k2mn} 
 T � � c � � c � � � c  � c � � � c � X C , � 3� c �  3� c � � 3B5^ q %v� w `8� rx 
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error of distorted pixel coordinates,

^ 6
, the error of undis-

torted pixel coordinates,
^ �

, the distance with respect to
the optical ray,

^ x , and normalized calibration error,
^ ` , as

listed in Table 2. The first three measurements are intuitive
but sensitive to digital image resolution, camera’s field-of-
view, and object-to-camera distance. Normalized calibra-
tion error (NCE) [18] overcomes the sensitivity by normal-
izing the discrepancy between back-projected and real 3D
points with respect to the area each back-projected pixel
covers at a given distance from the camera.

3. Computer simulations
Our simulated camera has: pixel centers on a

E"FA�� EDK 
.p� � . G��
m grid, scale factor

@ A 
 .�� �
, and effective

focal length
� 
J�

mm, yielding pixel focal lengths ofL 
\��� G
pix and

N 
�� G�G
pix. Second-order radial dis-

tortion is

/ q % r* 
 h ]�� G�� m
� 3

for Zhang’s model or

/ q 0 r* 
�"��� G R � m
� 3

in Tsai’s. The skew,
M

, is zero. The resolution
is

�". � � �;. � with principal point
T I A U I K X 
 T � ��� U � � G X .

The training points covering ] G h ��� cm from the camera
are the grid corners of � G � � G cm simulated checkerboard
patterns, placed at 16 different orientations in front of the
virtual camera with a

�)� S
angle with respect to the image

plane1. The 4108 testing points, covering

. G h ] G�G cm from
the camera, was generated by sampling a ] � ] � ] m cu-
bic space, where the camera was located at the center of
one side, at intervals of 10cm in all three dimensions and
discarding invisible points due to the field-of-view.

3.1. Effect of noise on calibration accuracy
We simulated 16 views of a

. G � . G
checkerboard pattern to

generate 1600 training points. Different levels of Gaussian
1The number of orientations and the angle of the pattern plane were

chosen according to Zhang [19], in which the best performance was re-
ported with more than 10 orientations and an angle near �l p¡ .
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Figure 1: Effect of pixel coordinate noise. Gaussian noise
of 0 mean, ¢ of

G � G � h .�� G pix added to pixel coordinates of
training data. No noise added to testing data.

noise were added to study its effect on calibration accuracy.
Effect of pixel coordinate noise. Fig. 1 shows a de-

crease in training and testing accuracies of both methods
as noise level increases2. Zhang’s algorithm was more sen-
sitive to pixel coordinate noise than Tsai’s, indicating that
high-accuracy corner detection is crucial to accurate cali-
bration of the former.

Effect of world coordinate noise. Fig. 2 illustrates a de-
crease of calibration accuracy as noise level increases, with
Zhang’s error higher than Tsai’s for the same noise range,
as shown in the first two columns of Fig. 2. However, as
Zhang’s minimal equipment requirements could simply be
a laser printed checkerboard pattern on a letter sized sheet,

2All four evaluation methods in Table 2 were used and results demon-
strated similar trends. Due to limited space, only the normalized calibra-
tion error (NCE) is plotted.
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Figure 2: Effect of world coordinate noise. Gaussian noise
of 0 mean, ¢ of

G � � h �"� G mm added to 3D world coordinates
of Tsai’s training data and 2D world coordinates of Zhang’s
data, as Zhang’s algorithm assumes all feature points to fall
on
�  plane. No noise added to testing data.
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Figure 3: Effect of training data quantity. See text for ex-
periment setup and comments.

most setups are able to achieve noise levels of ¢¤£ G �¥� mm,
obtaining a reasonably high calibration accuracy, as shown
in the third column of Fig. 2. In contrast, Tsai’s 3D mea-
surement is prone to noise; the fact that Tsai’s testing error
increased significantly when ¢�¦§� mm poses a strong con-
straint on a real-world setup for accurate measurement.

3.2. Effect of training data quantity
The training data was generated from 16 views of a checker-
board pattern containing between ] � ] and � � � � � grid
corners. Apparently, without noise, few training points are
sufficient to yield

. G�G)¨
accuracy, hence Gaussian noise of

zero mean and ¢ 
 G �z.
pix was added to the pixel coor-

dinates based on the accuracy of existing corner detection
algorithms. No noise was added to the testing data. The
average results of 10 trials are illustrated in Fig. 3.

A ] � ] pattern can produce 144 training points, sufficient
for Tsai’s algorithm to achieve decent accuracies. Yet as can
be seen in Fig. 3, Tsai’s error stabilized when more than 256
training points were used. Zhang’s error was higher than
Tsai’s with small training quantities, as the former is more
sensitive to noise. However, increasing the number of train-
ing points per pattern can alleviate this sensitivity. We also
notice that the testing errors exhibit higher standard devia-
tion with Tsai’s algorithm than Zhang’s. This is likely due
to the fact that the former was performed at the level of fea-
ture points whereas the latter at the levels of both points and
views, thus compensating for the inconsistencies of noisy
training points by using the planar constraints.

3.3. Effect of distortion model
Radial and decentering distortions [13] are the most com-
mon distortions modeled in camera calibration and can be
expressed as follows:
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Table 3: Distortion coefficients of simulated cameras.

Coefficients R1 R2 R1D2 R2D2 R3D2
/ * T

mm
� 3 X

-0.3 -0.3 -0.3 -0.3 -0.3
/ 3 T

mm
� 9 X

0 0.15 0 0.15 0.15
/�© T

mm
�vª X

0 0 0 0 0.1« * T mm
� 3 X

0 0 0.02 0.02 0.02« 3 T mm
� 3 X

0 0 0.015 0.015 0.015� ��6 6¬! 
 � � � � ! � , / * 1 3 �-/ 3 1 9 �?/ © 1 ª � |p|{| 5 � � � � !� � � « * ���  � � « 3 , 183 � � � 3� 5« * , 183 � �  3� 5 � � « 3 � �  � ! U
where

/ c T:­ 
?. U � U �{�{� X are radial distortion coefficients, « * ,« 3 decentering distortion coefficients, and
1 
 < � 3� �  3� .

In this experiment, five types of cameras were simulated,
each corresponding to a different distortion characteristic
consisting of the first Y low-order radial distortion terms
with or without the two decentering distortions, R Y ( Y = 1,
2) and R Y D2 ( Y = 1, 2, 3). The simulated coefficients were
chosen from empirical data and are listed in Table 3. All
the remaining camera parameters were the same as previ-
ously described. Each of the five simulated cameras was
calibrated by Zhang’s algorithm combined with each of the
five distortion models, R Y ( Y = 1, 2) and R Y D2 ( Y = 1, 2,
3), with skewness set to zero.

The left column of Fig. 4 shows, for each simulated
camera, the testing error versus the various distortion mod-
els used for calibration on a large training quantity of low
noise. High accuracy could be obtained so long as the dis-
tortion model assumed in calibration included all the distor-
tion components of the camera. However, the sixth order
radial term did not benefit the accuracy and adding higher
order radial terms could affect the estimation of lower order
terms, which may degrade calibration performance when
only a limited amount of noisy training data is available.
The right column of Fig. 4 shows the testing error of re-
sults calibrated on a small training quantity of high noise.
The addition of the sixth order radial term yielded a higher
error. Nonetheless, for a camera with unknown lens distor-
tions, including the two decentering distortion components
generally guaranteed a high calibration accuracy.

4. Real data experiments
The real data experiments took place in a laboratory space
equipped with three perpendicular projection screens, each
approximately � �¥� � .�� � m. A 3Com U.S. Robotics BigPic-
ture Camera with fixed focal length was placed along one
screen at a height of 0.5m, facing the other two adjacent
screens. The image resolution was

��� G � ��� G
. Two con-

figurations, the casual setup and the elaborate setup, were
investigated.

R1 R2 R1D2 R2D2 R3D2
0.01

0.1

1

10

100

simulated camera R1

distortion model used in calibration

no
rm

al
iz

ed
 c

al
ib

ra
tio

n 
er

ro
r (

lo
g)

R1 R2 R1D2 R2D2 R3D2
1

10

100

simulated camera R1

distortion model used in calibration

no
rm

al
iz

ed
 c

al
ib

ra
tio

n 
er

ro
r (

lo
g)

R1 R2 R1D2 R2D2 R3D2
0.01

0.1

1

10

100

simulated camera R2

distortion model used in calibration

no
rm

al
iz

ed
 c

al
ib

ra
tio

n 
er

ro
r (

lo
g)

R1 R2 R1D2 R2D2 R3D2
1

10

100

simulated camera R2

distortion model used in calibration

no
rm

al
iz

ed
 c

al
ib

ra
tio

n 
er

ro
r (

lo
g)

R1 R2 R1D2 R2D2 R3D2
0.01

0.1

1

10

100

simulated camera R1D2

distortion model used in calibration
no

rm
al

iz
ed

 c
al

ib
ra

tio
n 

er
ro

r (
lo

g)
R1 R2 R1D2 R2D2 R3D2

1

10

100

simulated camera R1D2

distortion model used in calibration

no
rm

al
iz

ed
 c

al
ib

ra
tio

n 
er

ro
r (

lo
g)

R1 R2 R1D2 R2D2 R3D2
0.01

0.1

1

10

100

simulated camera R2D2

distortion model used in calibration

no
rm

al
iz

ed
 c

al
ib

ra
tio

n 
er

ro
r (

lo
g)

R1 R2 R1D2 R2D2 R3D2
1

10

100

simulated camera R2D2

distortion model used in calibration

no
rm

al
iz

ed
 c

al
ib

ra
tio

n 
er

ro
r (

lo
g)

R1 R2 R1D2 R2D2 R3D2
0.01

0.1

1

10

100

simulated camera R3D2

distortion model used in calibration

no
rm

al
iz

ed
 c

al
ib

ra
tio

n 
er

ro
r (

lo
g)

R1 R2 R1D2 R2D2 R3D2
1

10

100

simulated camera R3D2

distortion model used in calibration

no
rm

al
iz

ed
 c

al
ib

ra
tio

n 
er

ro
r (

lo
g)

Figure 4: Testing accuracy vs. distortion model. Left:
trained from 16 views of � G � � G pattern with Gaussian
noise of 0 mean, ¢ 
 G �z.

pix added to pixel coordinates;
right: trained from 16 views of

. G � . G
pattern with Gaus-

sian noise of 0 mean, ¢ 
 G � � pix or 0.5mm added to pixel
and world coordinates. No noise added to testing data.

4.1. Casual setup
Tsai’s training data was obtained from 600 grid corners of a
checkerboard pattern of square size

� � �
cm, projected onto

the two visible screens, as in Fig. 5(a), covering a distance
of � G�G h ]�� � cm from the camera. The world coordinates of
the four pattern corners on each screen were measured and
the remaining points interpolated. Due to the calibration
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(a) (b) (c)

Figure 5: A demonstration of casual setup for generating
(a) Tsai’s training data, (b) Zhang’s training data, and (c)
testing data.

error between projectors and screens, the limited resolution,
and the non-rigid material of the screens, verifying with a
few interior points indicated an average interpolation error
of 4.1mm, approximately

G � � � ¨ of the pattern size.
Zhang’s training data was generated by printing

� � �
,

. � � R , .B� � .p� , and � G � � G checkerboard patterns onto letter
sized sheets. Each was attached to a rigid cardboard3 and
viewed at 16 different orientations at a roughly

�)� S
angle

to the camera image plane, as in Section 3, demonstrated in
Fig. 5(b). This produced four data sets of 768 – 6400 points,
ranging between � � h ��� cm from the camera. Since our in-
strument, a conventional ruler, was accurate to 1mm mark-
ers, we assume a maximum measurement error of 0.5mm,
about

G � ��R ¨ of the pattern size.
The testing set for both algorithms was created by plac-

ing at different locations a

.4� � .B�
printed checkerboard

pattern of

. G�G � �D�
cm, attached to a wooden board to move

along a special rail, as in Fig. 5(c), to provide 1872 accu-
rately measured testing points, covering

. G�G h � ��� cm.

4.1.1. Effect of training data quantity

Tsai’s algorithm was trained using between 50 and 600
points, evenly selected from the first data collection. The
average results of 10 trials showed no significant improve-
ments in testing accuracy beyond 300 training samples.

Zhang’s algorithm was trained separately on the four
data sets of the second data collection and the testing ac-
curacies increased with the number of training data per pat-
tern with no significant improvement beyond 100 samples
per pattern. These results are consistent with the simula-
tions. However, despite the large discrepancy of distance
coverage between training ( � � h ��� cm) and testing data
(

. G�G h � ��� cm), Zhang’s algorithm achieved impressive test-
ing accuracies, revealing an adequate scalability.

4.1.2. Effect of distortion models

The 3Com U.S. Robotics BigPicture Camera contains lens
distortions as can be seen in the images of Fig. 5. We stud-
ied the effect of distortion model on calibration accuracy.

Skewness. Although included in a linear transformation
and not in the distortion model, skewness is a type of dis-

3According to Zhang’s study [19], the effect of systematic non-
planarity can be ignored in our experiments.

Table 4: Accuracy comparison of Tsai and Zhang’s calibra-
tion algorithms in casual setup and elaborate setup.

Calib. Training Error Testing Error
Setup Error Tsai Zhang Tsai Zhang^ 6

(pix) 0.8843 0.2776 3.9206 1.0028
Casual

^ �
(pix) 0.9410 0.2898 4.0865 1.0470^ x (mm) 3.5752 0.1648 9.9358 2.7689^ ` 2.3150 0.7099 10.1184 2.5602^ 6
(pix) 0.3498 0.1816 0.3445 0.6301

Elaborate
^ �

(pix) 0.3730 0.1907 0.3701 0.6856^ x (mm) 0.9456 0.4135 0.9244 1.6926^ ` 0.9141 0.4667 0.9079 1.6767

tortion. In Zhang’s method, the skewness
M

was estimated,
but was essentially zero (

�"� ]�] � . G � 9 ). For comparison,
the camera was calibrated by Zhang’s algorithm with

M
es-

timated or fixed at zero, and the NCEs were 2.56 and 2.31
respectively, showing no improvement when estimating

M
.

Lens distortion. Zhang’s algorithm was integrated with
each of the five distortion models in Section 3.3 and calibra-
tion accuracies indicated that the models considering decen-
tering distortions performed marginally better.

4.2. Elaborate setup
To investigate the improvement realized by increasing mea-
surement accuracy and by reducing the distance discrep-
ancy between training and testing set, the rail structure for
obtaining testing data in Section 4.1 was used to generate
3810 accurately measured feature points to cover the cam-
era’s working volume. From this set, 600 evenly distributed
points, covering

��� h � �)� cm from the camera, were selected
as Tsai’s training data and the remaining 3210 points, cover-
ing

��� h � �D� cm, were used as a test set for both algorithms.
Zhang’s training data was generated in the same manner as
in Section 4.1 but replacing the letter sized cardboard with
the

. G�G � ���
cm wooden board, producing 16 views of 255

planar points covering R � h ��� � cm from the camera.
As shown in Table 4, compared to the best results in the

casual setup, Tsai’s testing errors decreased by about R GD¨
while Zhang’s error decreased by only ] � ¨ as there was lit-
tle increase in Zhang’s training data accuracy. However, the
distance change in training samples from the casual setup
( � � h ��� cm) to the elaborate setup ( R � h ��� � cm) yielded a
modest improvement in Zhang’s test results, as the test data
(

�D� h � �D� cm) was now closer to the range of the latter.

5. Conclusions
We presents an empirical study to investigate how noise
level, training data quantity, and distortion model affect
camera calibration accuracy. Two of the most popular, rep-
resentative and accurate methods by Tsai and Zhang were

5



chosen for experimentation on both simulation and real
data. Four commonly used criteria evaluate accuracy on
separate training and testing sets.

Results indicated that the conventional world-reference
based approach, exemplified by Tsai, achieves high accu-
racy when trained on data of low measurement error. How-
ever, this requires an accurate 3D measurement, typically
involving hundreds of samples with respect to a fixed refer-
ence, which is prone to noise and, as our real-data experi-
ments confirmed, yields a disappointing NCE of 10.1. Af-
ter a time-consuming setup and measurement process, we
limited NCE to approximately 0.9, but this effort may be
inordinately expensive for most researchers.

In contrast, the planar calibration approach, exemplified
by Zhang, requires neither a laborious measuring task nor
specialized equipments. With a hand-held pattern placed
about 40cm from the camera, we obtained an NCE of 2.6.
Moreover, the sensitivity of Zhang’s algorithm to pixel co-
ordinate noise may be overcome by increasing the train-
ing points, simply by printing another checkerboard pattern
containing more grid corners. In summary, these results
demonstrated the flexibility and suitability of the planar ap-
proach for calibration in dynamic environments.

Our study also included a comparison of distortion mod-
els to determine the importance of various coefficients given
unknown lens distortions. The zero-skewness assumption
made in many methods was confirmed to be reasonable, at
least for the average quality cameras we tested, and that
the second order term was sufficient for modeling radial
distortion [12]. Estimating the fourth order radial term
may be desirable with low noise levels, although including
the sixth order term could degrade calibration performance
for a small quantity of noisy training data. For a camera
with unknown distortion, adding decentering components,
in general, increases the likelihood of accurate calibration.
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[7] J. Heikkilä. Geometric camera calibration using circular con-
trol points. IEEE Trans. Pattern Analysis and Machine Intel-
ligence, 22(10):1066–1077, 2000.

[8] T. Kanade, P. Rander, and P. J. Narayanan. Virtualized re-
ality: constructing virtual worlds from real scenes. IEEE
Multimedia, Immersive Telepresence, 4(1):34–47, 1997.

[9] J.-M. Lavest, M. Viala, and M. Dhome. Do we really need an
accurate calibration pattern to achieve a reliable camera cal-
ibration? In European Conf. on Computer Vision, volume I,
pp158–174, 1998.

[10] D. Liebowitz and A. Zisserman. Metric rectification for per-
spective images of planes. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, pp482–488, June 1998.

[11] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and
H. Fuchs. The office of the future: a unified approach to
image-based modeling and spatially immersive displays. In
SIGGRAPH 98, pp179–188, July 1998.

[12] J. Salvi, X. Armangué, and J. Batlle. A comparative review
of camera calibrating methods with accuracy evaluation. Pat-
tern Recognition, 35:1617–1635, 2002.

[13] C. C. Slama, editor. Manual of photogrammetry (4th ed).
American Society of Photogrammetry, 1980.

[14] P. Sturm and S. Maybank. On plane-based camera calibra-
tion: a general algorithm, singularities, applications. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition,
pp432–437, June 1999.

[15] B. Triggs. Autocalibration from planar scenes. In European
Conf. on Computer Vision, pp89–105, June 1998.

[16] R. Y. Tsai. A versatile camera calibration technique for high-
accuracy 3d machine vision metrology using off-the-shelf
tv cameras and lenses. IEEE J. Robotics and Automation,
3(4):323–344, 1987.

[17] G. Wei and S. Ma. A complete two-plane camera calibra-
tion method and experimental comparisons. In Proc. 4th Intl.
Conf. on Computer Vision, pp439–446, May 1993.

[18] J. Weng, P. Cohen, and M. Herniou. Camera calibration with
distortion models and accuracy evaluation. IEEE Trans. Patt.
Anal. and Machine Intell., 14(10):965–980, 1992.

[19] Z. Zhang. A flexible new technique for camera calibra-
tion. Technical Report MSR-TR-98-71, Microsoft Research,
http://research.microsoft.com/ ® zhang/ Calib/, 1998.

[20] Z. Zhang. A flexible new technique for camera calibra-
tion. IEEE Trans. Pattern Analysis and Machine Intelligence,
22(11):1330–1334, 2000.

6


