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Abstract

The diffusion framework exhibits many promising propestier the pur-
poses of junction analysis. In its most common form, imagesd#fused
either isotropically or with respect to gradient infornaaitin an anisotropical
fashion. This information is then collected into an ori¢iotaal distribution
function (ODF) and the resulting features are modeledXgs'Y’ or 'T-
shaped junctions. Specific to the spatio-temporal domaid,im particular,
a 2D spatio-temporal slice, points of kinetic-based odolusre identified
by T-junctions while points of kinetic-transparency folkajunctions. The
challenge is that most forms of diffusion are symmetric ieithepresenta-
tion and are unable to properly distinguish between thesgunction types.
This work proposes to diffuse information asymmetricalhdanvestigates
the differences between weighting the iterative diffusemtropically versus
as an ODF-shaped region of influence function.

1 Introduction

Occlusion plays a pivotal role in many motion-based, maghision tasks. From target
tracking to scene segmentation, occlusion aids in theifitatton of motion boundaries
and hence serves as a viable precursor for such applicatiims challenge; however,
is that occlusion is often downplayed or ignored altogethenany motion estimation /
segmentation routines to facilitate model estimationorgrg a valuable source of infor-
mation [1, 9]. Occlusion detection is well defined within gpatio-temporal domain and
is facilitated through the field of junction analysis, bofhwdich will be detailed in the
following section. Two competing approaches: convolutigpe filtering and diffusion
frameworks will be reviewed in section 2, while a novel agmio designed specifically to
distinguish the asymmetrical nature of occlusion patté&smgoposed in section 3. This
algorithm is then applied to both simulated and real-wodthdn section 4 and directions
of future work will be reviewed in section 5.
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Figure 1: Spatio-temporal volume created byflbever gardersequence. The 3D volume
created by stacking the images over time (a), where a skemtiiomy=80 (b), indicates
using the bottom, dashed line the corresponding contabuif image (c) while the top,
dashed line corresponds to that of (d)

2 Background

The following section introduces the spatio-temporal dionas a reasonable representa-
tion within which to identify points of occlusion. Such ptérare discerned using methods
from junction analysis and previous approaches are iryastil that are capable of creat-
ing asymmetrical ODFs that highlight occlusion-like feat

2.1 Spatio-Temporal Domain

The spatio-temporal domain is well-suited to the deteabibocclusionary events as they
are depicted as the junction of contours [3, 16]. This effedtlustrated in figure 1.
High gradient regions in the spatial domain give rise to card in the spatio-temporal
domain as can be seen by the slice extracted in figure 1b. Tigkseradient regions
can be formed from either an object’s motion boundary or feotaxtural pattern on the
object itself. This is an important distinction as not alhtaurs in the spatio-temporal do-
main necessarily correspond to object boundaries. The e¥dmetic-based occlusion,
when one object moves in front of another with respect to Hmaara’s viewing angle,
is depicted as a merging of spatio-temporal contours whdeatlusion is detailed as a
bifurcation or splitting of a contour into two such conto{t§]. This pattern, akin to a
T-junction shape, is suitably described using junctionysial Transparency, which also
involves an object moving in front of another, results inXashaped junction as both
features are visible, albeit with a much less consistentozonover a finite span of time.
It is occlusion that will be the focus of this work as it is ma@nsistent in its depiction
with respect to the gradient magnitude in the spatio-tealbymain, and forms the more
prevalent phenomenon in real-world, target tracking &agilbns.

2.2 Junction Analysis

Within the field of junction analysis, there are two primappeoaches. The first and more
standard form can be categorized as convolution-basertfiltkere a quadrature pair of
kernels are convolved at either a single or multiple levélsaale. A typical example
would be the commonly-used Gabor kernels [4]. The seconth isse the diffusion
framework to propagate information locally to amalgamatectural information [8, 11].
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Figure 2: (a) Sample T-junction type pattern with the cquoesling ODF when applying
(b) Gabor withoy = (%)ax, (c) one-sided filters and (d) the wedge filters (dashed lines
denote local maxima)
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Figure 3: Quadrature pair of Gabor filters at frequency ob@with (a) ox=0y and (b)
Oy = (%)ox, (c) OneSided filters [12], and (d) Wedge filters [15]

2.2.1 Convolution-Based Approaches

To discern between the various types of junctions, loca&rtation must first be inferred.
The standard approach is to populate an orientationailmision function (ODF), akin
to an orientational histogram, where the saliency of theligra measure is calculated at
each of the discretized angles [15]. For example, applyiogadrature-pair of Gabor
filters, results in an ODF as seen in figure 2b where the maximasponse corresponds
to the underlying, dominant orientation patterns from thiginal image. Conceptually,
the original filter pair, as seen in figure 3b, are rotated wépect to the x-axis and con-
volved with the image data. The response at that angle igsepted in polar form in
figure 2b where the radius component denotes the salienay ofi@entation at the given
polar angle. Gabor filters are ill-suited to discriminatéwsen T and X junctions as the
filters themselves are symmetric and produce the same OpBrrss. To overcome this
limitation, further work has been done to create asymmagttigoe, quadrature pairs of
filters to address this shortcoming. Early work by Peronalired an end-point filter that
was specifically targeted to identify end-points of linégfes, while later work by Simon-
celli and Farid improved on the accuracy by designing a spolafr-based Gabor kernels,
known as wedge-filters [12, 15]. Yu further improved the Hsshby building a rotated
averaging wedge approach that was more robust to the effentise while being more
discriminating at differing scale values [19]. All of thecaémentioned approaches suf-
fer from the same problem as the ODF signature that they pedaoes not necessarily
indicate the underlying pattern sought and that they tendeszribe with much infor-
mation, whatdiffusion approaches have the potential of describing in a more stitccin
fashion [5, 7]. Also, for the Gabor, end-point and the wedtjerfapproaches, there are
several possible parameter variations, namely the diffdrequency parameter choices,
which must be accounted for, requiring the use of a large loéskich filters to properly
account for the various possible patterns [4,12,15].
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Figure 4. (a) Slanted asymmetrical input (T-junction),gnmetrical input (X-junction),
(c) isotropic and (d) anisotropic weighting function (eté to align with vertical axis)

2.2.2 Diffusion-Based Approaches

An alternative to the local convolution-based approackde propagate local structural
information from pixel to pixel, accumulating a local daption of the surrounding pat-
tern. Diffusion, also referred to as regularization of désawell-suited to this task. It
seeks to strike a balance between maintaining the origifiaimation, through the data
consistency term, while biasing the local model using tiffesion or regularization term,
consecutively shown as the two terms in Equation 1;

E() = [ [50-12+0(r)]do )

where theg-function represents the regularization term with respeat that typically
takes some form of gradient information,a smoothing term to balance the data con-
sistency versus the amount of regularization desired imtiteut imagd wherel, is the
original data.Q is the domain over which the data is integrated, such as tteasgdomain
when applied to images [18]. The general application doméidiffusion ranges from
medical imaging to image enhancement [2, 14]. There areaesteoices that the gradi-
ent form may take such as structure tensors or directiomaladizes. To detail previous
approaches, we will examine the benefits of symmetric stradensors. To highlight the
issue faced in the distinction betwe€rmandX junctions as it relates to the spatio-temporal
domain, the two test cases illustrated in figures 4(a,b) sed.u

The most common type of diffusion is isotropic where infotimais passed from the
center node to the neighboring nodes as a function of relgtieximity without regard
to the relative direction. Often referred to as blurring e image processing domain,
this approach is adept in removing noise from an image atxperse of losing high
gradient edges. For example, the test cases from figure 4deshalwly blur as seen from
the results in figures 5. The ellipses reflect the certaintgsuee along the major and mi-
nor elliptical axis directions, where a stick-thin ellipsgrresponds to a measure of high
certainty and a circle represents high uncertainty as taigerlying gradient direction.
The diffusion results, after each iteration, are repre=gthy a single structure tensor. As
expected, the results approach a case where all of the noelespresented by the same
direction and certainty. Another approach is to bias thieisiibn based on the underlying
gradient direction, otherwise known as anisotropic difiad13, 18]. This approach aids
in only smoothing datalong edges rather thaacrossthem, hence maintaining contour
information while reduce noise components in images. Amgpta of the anistropic ker-
nel aligned with a vertical orientation is shown in figure Agplying this approach to the
test cases using the single result representation, yigfdsisresults to the isotropic case.
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Figure 5: Isotropic results against the X-junction daterafa) one and (b) ten iterations
as well as on the T-junction data after (¢) one and (d) teatitems. Results of anistropic
diffusion against X-junction data after (e) one and (f) tesrdtions as well as on the
T-junction data after (g) one and (h) ten iterations.

It is the representation of the diffusion process as a siregalt after each iteration that
prevents the identification of junctions. Also with thes@m@aches, it is only possible to
represent linear segments at a given node as opposed tdeongithat the local structure
may be a curve as well. To address the latter concern, tengog\wsought to propagate
data based on curvature in addition to proximity within thféudion framework [8, 17].
The kernel, owvoting fieldas it is referred to in their work, was constructed as a fomcti
of proximity between nodes, as well as biasing towards Inatfser than curves through
their decay function. The tensor voting technique was ablgopulate sparse and noisy
data to extract the underlying structure with remarkabdeilte [10,17]. The junction de-
tection approach was taken to be all those locations witallpencertain (ball-shaped)
gradient tensors surrounded by certain (stick-shapedbptsrjl10]. Although this may be
appropriate for sparse data, this approach is ill-suitethf® dense structural information
portrayed within the spatio-temporal domain. Also, on a enfundamental level, not
all nodes with tensors of high uncertainty, surrounded Imgaes with higher certainty
necessarily denote a junction. To identify a junction at ilbele level, the representa-
tion cannot take the form of a single tensor, as a junctiorrahtly impliesmultiple
underlying orientations. Relaxation labeling addreskissdoncern by allowing multiple
representations at a given node [6, 11]. This iterative gge@dds support to those nodes
that tend to agree with the general model of its neighborioden On a per-node basis,
the degree of similarity between two nodes is derived thinomgompatibility function.
Several implementations have been designed such thatrigeatibility function is based
on co-circularity, co-heliocity as well as the normal andgantial curvature components
to the vector/tensor fields [2, 11, 14]. Although impressisults are achieved in identi-
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Figure 6: (a) sample asymmetrical voting field aligned withtical axis (arrowheads
point towards the x-axis) and (b) example of ODF-shaped ROI

fying the perceived boundary between texture flow fields eiftenates at the node level
are still symmetric in their representation thus preventidirect distinction between the
depictions ofT andX-junctions.

3 Asymmetrical Voting

Combining the concepts of an asymmetrical, orientatiotribligion function and the dif-
fusion framework, is most easily described in the contexst jpblitical election as does the
approach of tensor voting in their description of votingd®[10]. Diffusion, at its core,
seeks to spread information from a center node, which witidberred to as the voter, to
the neighboring nodes, or receivers, as shown in figure 6&.b&Hot, the information it-
self that is propagated, is comprised of two components fifgtes the balloform, which
in the case of junction analysis, takes the form of an angulantation. The second part
is the ballot'sstrength which is weighted by the proximity of the voter to the reegiv
and the relative direction between them, as in anisotrojffiasibn. The final step is to
propagate asymmetrical ballots from the initial, symneegniadient information. Note
that in this work, gradients are aligned tangent rather ttamal to the gradient edge to
facilitate clearer depictions. There are two stages to tbpgsed approach: the first is to
transform the symmetrical information into a collectionasfymmetrical (unidirectional)
ballots. The next stage is the iterative process that pesvide diffusion of information.

In the first stage, the initial, symmetrical ballot is tramsfed into an asymmetri-
cal/unidirectional voting field. For example, for a vertlgadirected gradient, the voting
field would be aligned as per figure 6a. Conceptually, all efltallots within the voting
field point towards the axis perpendicular to the originaldient vector direction.

The initial gradient information at votgris represented in polar form @g;, 6;). The
form and strength of the ballot sent from vofeto receiver are represented QBE , Bﬁ-‘)
respectively, and are calculated as per equations (2-4):

F_f 6 |6—al>3
Bij = { 6;+m  otherwise @

B =pj - Gij (0x) - Wij (1)-R(6)) (3)

oy [0 3T <3T
Wi (T)_{ 1 otherwise (4)



whereT is the minimum distance between nodgg,the distance between nodesjj
along the x-axis@; is the polar angle formed from votej’ to receiver i’ with respect to
the x-axis, andG;;j is a 2D Gaussian witly = (%)cxX rotated with respect to the gradient
direction usingR(6;). The votes are collected at the receiver frbnof its neighboring
voters, and combined using a summation of 1D, periodic Gansshifted with respect
to the ballot form, to create the ODF as follows:

ODF (8) =a[&(0)-p lz B - Gor (B, )] (5)
1 6=206
& (0)= { 0 otherwise (6)

wherek #1i, o is the diffusion coefficient and th&,; is a periodic Gaussian, which isa 1D
Gaussian sampled between [-3,3] to correspond with angalaes between [073), as
the ODF data, in polar-form, is also periodic. Once everyeroas tallied their respective
collection of ballots into an ODF, the iterative processtoures to diffuse the information
as per theterative, asymmetrical diffusioequation 7:

00 (8)~ 5 [ (a-0DF' (@) +(1- Ay (1) -0F! *(9)-008 *(a)]
(7)

1 i=]

Bi = { 0 otherwisje (8)
whereODF! is the orientational distribution function at nodest iteration time =t’ and
ODthfl(qu) is the ODF-shaped ROI term. This form of diffusion uses thé=@Da node
both as the ballot that is being propagated to its neighbors atideasgion of influence
(ROI) function to determine the ballots’ strength. An ilixagion of this process is shown
in figure 6b where th& shaped ODF at voterj” is propagated to receivers, {+ 1);

however, with less strength to+ 1’ as it is less aligned with the underlying ODF-shaped
ROI.

4 Resultsand Discussion

To investigate the importance of the ODF-shaped ROI termérasymmetrical diffusion
of equation 7, two different versions of the iterative pseevere implemented. The first
replaces this term with an isotropic, 2D Gaussian functitilerthe second implements
the ROI as per equation 7. Both the isotropic and the ODFeth&®I functions were
applied to the test cases shown in figure 4(a,b) and are depitfigure 7.

The first column depicts the results of the initial votingg&taas per equations (2-6).
The second column denotes the application of the isotroficfBnction. With this ap-
proach, the results are propagated from the voter node® teetieiving nodes without a
bias towards the underlying estimate at the voting nodénoddgh the results are satisfac-
tory, figure (7b,f), the ODF information becomes blurredsasxpected with an isotropic
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Figure 7: Top row: results against slanted T input, bottom: ragainst slanted X input of
figure (4a-b) respectively. First column: results aftetiaivoting stage, second column:
results after ten iterations with isotropic ROI functiohjrtl column: results after ten
iterations with ODF-shaped ROI function and fourth colurliese-up ODFs from central
position (6,6) from the third column. All node-wise ODFs bdxeen normalized such that
black-white ODFs correspond to high-low certainty valuespectively.

approach. With the ODF-shaped ROI, information is diffused logical fashion by se-
lectively updating the receiving nodes most likely to shemenmon properties and are
illustrated in the third column.

The second test was to apply the iterative, asymmetricllisiiiin process to the
spatio-temporal slice of the garden sequence in figure 1khdtld be noted that this
real-world image sequence is not restricted to horizontation whereby junctions are
solely a result of occlusion. Other phenomenon, such agaemotion, may give rise to
junctions in the slice image; however, it remains a stantdardhmark in motion analysis
and occlusion detection, via junction analysis, is a firgetwithin that process. In figure
8, results are shown for the identified locations from figuve The top row of figure 8
indicates the ODFs calculated per node overlaid on ther@igimage data, the middle
row are results after one iteration, and the bottom row shesults after ten iterations
and illustrate how locations of junctions remain stablessiiterations through its three-
lobed appearance. At location 'C’ (figure 8, third columrg tiDFs tend to smooth out
towards standard symmetrical responses as expected. fdmats were obtained with
the ODF-shaped ROI function, as per equation 7.

5 Conclusion
An iterative, asymmetrical diffusion process is proposedreate local, orientation dis-

tribution functions. These ODFs can be used to identifyficjions, through their three-
lobed appearance, to identify occlusion within a spatiogeral slice or provide features
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Figure 8: Top row: close-up of regions A,B,C from figure 1biwdtverlaid results for ten
iterations { = 10), and respective close-ups from top row (denoted by hiactangles)
fort = 1 (middle row) and = 10 (bottom row)

for detection/segmentation applications in general. feusmeas of work will explore us-
ing the coherence value of the structure tensor for thewegian equation 5 to add further
robustness to the process and investigate the framewdnkwtite 3D domain.
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