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Abstract

The diffusion framework exhibits many promising properties for the pur-
poses of junction analysis. In its most common form, images are diffused
either isotropically or with respect to gradient information in an anisotropical
fashion. This information is then collected into an orientational distribution
function (ODF) and the resulting features are modeled as’X’, ’Y’ or ’T’ -
shaped junctions. Specific to the spatio-temporal domain, and in particular,
a 2D spatio-temporal slice, points of kinetic-based occlusion are identified
by T-junctions while points of kinetic-transparency formX-junctions. The
challenge is that most forms of diffusion are symmetric in their representa-
tion and are unable to properly distinguish between these two junction types.
This work proposes to diffuse information asymmetrically and investigates
the differences between weighting the iterative diffusionisotropically versus
as an ODF-shaped region of influence function.

1 Introduction

Occlusion plays a pivotal role in many motion-based, machine vision tasks. From target
tracking to scene segmentation, occlusion aids in the identification of motion boundaries
and hence serves as a viable precursor for such applications. The challenge; however,
is that occlusion is often downplayed or ignored altogetherin many motion estimation /
segmentation routines to facilitate model estimation: ignoring a valuable source of infor-
mation [1,9]. Occlusion detection is well defined within thespatio-temporal domain and
is facilitated through the field of junction analysis, both of which will be detailed in the
following section. Two competing approaches: convolution-type filtering and diffusion
frameworks will be reviewed in section 2, while a novel approach designed specifically to
distinguish the asymmetrical nature of occlusion patternsis proposed in section 3. This
algorithm is then applied to both simulated and real-world data in section 4 and directions
of future work will be reviewed in section 5.
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Figure 1: Spatio-temporal volume created by theflower gardensequence. The 3D volume
created by stacking the images over time (a), where a slice taken fromy=80 (b), indicates
using the bottom, dashed line the corresponding contribution of image (c) while the top,
dashed line corresponds to that of (d)

2 Background

The following section introduces the spatio-temporal domain as a reasonable representa-
tion within which to identify points of occlusion. Such points are discerned using methods
from junction analysis and previous approaches are investigated that are capable of creat-
ing asymmetrical ODFs that highlight occlusion-like features.

2.1 Spatio-Temporal Domain

The spatio-temporal domain is well-suited to the detectionof occlusionary events as they
are depicted as the junction of contours [3, 16]. This effectis illustrated in figure 1.
High gradient regions in the spatial domain give rise to contours in the spatio-temporal
domain as can be seen by the slice extracted in figure 1b. Thesehigh gradient regions
can be formed from either an object’s motion boundary or froma textural pattern on the
object itself. This is an important distinction as not all contours in the spatio-temporal do-
main necessarily correspond to object boundaries. The event of kinetic-based occlusion,
when one object moves in front of another with respect to the camera’s viewing angle,
is depicted as a merging of spatio-temporal contours while disocclusion is detailed as a
bifurcation or splitting of a contour into two such contours[16]. This pattern, akin to a
T-junction shape, is suitably described using junction analysis. Transparency, which also
involves an object moving in front of another, results in anX-shaped junction as both
features are visible, albeit with a much less consistent contour, over a finite span of time.
It is occlusion that will be the focus of this work as it is moreconsistent in its depiction
with respect to the gradient magnitude in the spatio-temporal domain, and forms the more
prevalent phenomenon in real-world, target tracking applications.

2.2 Junction Analysis

Within the field of junction analysis, there are two primary approaches. The first and more
standard form can be categorized as convolution-based filters where a quadrature pair of
kernels are convolved at either a single or multiple levels of scale. A typical example
would be the commonly-used Gabor kernels [4]. The second, isto use the diffusion
framework to propagate information locally to amalgamate structural information [8,11].
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Figure 2: (a) Sample T-junction type pattern with the corresponding ODF when applying
(b) Gabor withσy = (1

2)σx, (c) one-sided filters and (d) the wedge filters (dashed lines
denote local maxima)
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Figure 3: Quadrature pair of Gabor filters at frequency of 0.75 with (a) σx=σy and (b)
σy = (1

2)σx, (c) OneSided filters [12], and (d) Wedge filters [15]

2.2.1 Convolution-Based Approaches

To discern between the various types of junctions, local orientation must first be inferred.
The standard approach is to populate an orientational distribution function (ODF), akin
to an orientational histogram, where the saliency of the gradient measure is calculated at
each of the discretized angles [15]. For example, applying aquadrature-pair of Gabor
filters, results in an ODF as seen in figure 2b where the maximumresponse corresponds
to the underlying, dominant orientation patterns from the original image. Conceptually,
the original filter pair, as seen in figure 3b, are rotated withrespect to the x-axis and con-
volved with the image data. The response at that angle is represented in polar form in
figure 2b where the radius component denotes the saliency of an orientation at the given
polar angle. Gabor filters are ill-suited to discriminate between T and X junctions as the
filters themselves are symmetric and produce the same ODF response. To overcome this
limitation, further work has been done to create asymmetrical-type, quadrature pairs of
filters to address this shortcoming. Early work by Perona involved an end-point filter that
was specifically targeted to identify end-points of lines/edges, while later work by Simon-
celli and Farid improved on the accuracy by designing a set ofpolar-based Gabor kernels,
known as wedge-filters [12, 15]. Yu further improved the results by building a rotated
averaging wedge approach that was more robust to the effectsof noise while being more
discriminating at differing scale values [19]. All of the aforementioned approaches suf-
fer from the same problem as the ODF signature that they produce does not necessarily
indicate the underlying pattern sought and that they tend todescribe with much infor-
mation, whatdiffusion approaches have the potential of describing in a more succinct
fashion [5, 7]. Also, for the Gabor, end-point and the wedge filter approaches, there are
several possible parameter variations, namely the different frequency parameter choices,
which must be accounted for, requiring the use of a large bankof such filters to properly
account for the various possible patterns [4,12,15].
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Figure 4: (a) Slanted asymmetrical input (T-junction), (b)symmetrical input (X-junction),
(c) isotropic and (d) anisotropic weighting function (rotated to align with vertical axis)

2.2.2 Diffusion-Based Approaches

An alternative to the local convolution-based approaches is to propagate local structural
information from pixel to pixel, accumulating a local description of the surrounding pat-
tern. Diffusion, also referred to as regularization of data, is well-suited to this task. It
seeks to strike a balance between maintaining the original information, through the data
consistency term, while biasing the local model using the diffusion or regularization term,
consecutively shown as the two terms in Equation 1:

E (I) =
∫

Ω

[α
2

(I − Io)
2 +φ (τ)

]

dΩ (1)

where theφ -function represents the regularization term with respectto τ that typically
takes some form of gradient information,α a smoothing term to balance the data con-
sistency versus the amount of regularization desired in theoutput imageI whereIo is the
original data.Ω is the domain over which the data is integrated, such as the spatial domain
when applied to images [18]. The general application domainof diffusion ranges from
medical imaging to image enhancement [2, 14]. There are several choices that the gradi-
ent form may take such as structure tensors or directional derivatives. To detail previous
approaches, we will examine the benefits of symmetric structure tensors. To highlight the
issue faced in the distinction betweenT andX junctions as it relates to the spatio-temporal
domain, the two test cases illustrated in figures 4(a,b) are used.

The most common type of diffusion is isotropic where information is passed from the
center node to the neighboring nodes as a function of relative proximity without regard
to the relative direction. Often referred to as blurring in the image processing domain,
this approach is adept in removing noise from an image at the expense of losing high
gradient edges. For example, the test cases from figure 4 tendto slowly blur as seen from
the results in figures 5. The ellipses reflect the certainty measure along the major and mi-
nor elliptical axis directions, where a stick-thin ellipsecorresponds to a measure of high
certainty and a circle represents high uncertainty as to theunderlying gradient direction.
The diffusion results, after each iteration, are represented by a single structure tensor. As
expected, the results approach a case where all of the nodes are represented by the same
direction and certainty. Another approach is to bias the diffusion based on the underlying
gradient direction, otherwise known as anisotropic diffusion [13,18]. This approach aids
in only smoothing dataalongedges rather thanacrossthem, hence maintaining contour
information while reduce noise components in images. An example of the anistropic ker-
nel aligned with a vertical orientation is shown in figure 4d.Applying this approach to the
test cases using the single result representation, yields similar results to the isotropic case.
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Figure 5: Isotropic results against the X-junction data after (a) one and (b) ten iterations
as well as on the T-junction data after (c) one and (d) ten iterations. Results of anistropic
diffusion against X-junction data after (e) one and (f) ten iterations as well as on the
T-junction data after (g) one and (h) ten iterations.

It is the representation of the diffusion process as a singleresult after each iteration that
prevents the identification of junctions. Also with these approaches, it is only possible to
represent linear segments at a given node as opposed to considering that the local structure
may be a curve as well. To address the latter concern, tensor voting sought to propagate
data based on curvature in addition to proximity within the diffusion framework [8, 17].
The kernel, orvoting fieldas it is referred to in their work, was constructed as a function
of proximity between nodes, as well as biasing towards linesrather than curves through
their decay function. The tensor voting technique was able to populate sparse and noisy
data to extract the underlying structure with remarkable results [10,17]. The junction de-
tection approach was taken to be all those locations with locally uncertain (ball-shaped)
gradient tensors surrounded by certain (stick-shaped) tensors [10]. Although this may be
appropriate for sparse data, this approach is ill-suited for the dense structural information
portrayed within the spatio-temporal domain. Also, on a more fundamental level, not
all nodes with tensors of high uncertainty, surrounded by tensors with higher certainty
necessarily denote a junction. To identify a junction at thenode level, the representa-
tion cannot take the form of a single tensor, as a junction inherently impliesmultiple
underlying orientations. Relaxation labeling addresses this concern by allowing multiple
representations at a given node [6,11]. This iterative process adds support to those nodes
that tend to agree with the general model of its neighboring node. On a per-node basis,
the degree of similarity between two nodes is derived through a compatibility function.
Several implementations have been designed such that the compatibility function is based
on co-circularity, co-heliocity as well as the normal and tangential curvature components
to the vector/tensor fields [2, 11, 14]. Although impressiveresults are achieved in identi-
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Figure 6: (a) sample asymmetrical voting field aligned with vertical axis (arrowheads
point towards the x-axis) and (b) example of ODF-shaped ROI

fying the perceived boundary between texture flow fields, theestimates at the node level
are still symmetric in their representation thus preventing a direct distinction between the
depictions ofT andX-junctions.

3 Asymmetrical Voting

Combining the concepts of an asymmetrical, orientation distribution function and the dif-
fusion framework, is most easily described in the context ofa political election as does the
approach of tensor voting in their description of voting fields [10]. Diffusion, at its core,
seeks to spread information from a center node, which will bereferred to as the voter, to
the neighboring nodes, or receivers, as shown in figure 6b. The ballot, the information it-
self that is propagated, is comprised of two components. Thefirst is the ballotform, which
in the case of junction analysis, takes the form of an angularorientation. The second part
is the ballot’sstrength, which is weighted by the proximity of the voter to the receiver
and the relative direction between them, as in anisotropic diffusion. The final step is to
propagate asymmetrical ballots from the initial, symmetric gradient information. Note
that in this work, gradients are aligned tangent rather thannormal to the gradient edge to
facilitate clearer depictions. There are two stages to the proposed approach: the first is to
transform the symmetrical information into a collection ofasymmetrical (unidirectional)
ballots. The next stage is the iterative process that provides the diffusion of information.

In the first stage, the initial, symmetrical ballot is transformed into an asymmetri-
cal/unidirectional voting field. For example, for a vertically-directed gradient, the voting
field would be aligned as per figure 6a. Conceptually, all of the ballots within the voting
field point towards the axis perpendicular to the original gradient vector direction.

The initial gradient information at voterj is represented in polar form as(ρ j ,θ j). The
form and strength of the ballot sent from voterj to receiveri are represented as(BF

i j ,B
S
i j )

respectively, and are calculated as per equations (2-4):

BF
i j =

{

θ j
∣

∣θ j −φi j
∣

∣ >
π
2

θ j +π otherwise
(2)

BS
i j = ρ j ·Gi j (σx) ·Ψi j (τ) ·R(θ j) (3)

Ψi j (τ) =

{

0 − 1
2τ ≤ xi j ≤

1
2τ

1 otherwise
(4)



whereτ is the minimum distance between nodes,xi j the distance between nodes (i, j)
along the x-axis,φi j is the polar angle formed from voter ’j ’ to receiver ’i’ with respect to
thex-axis, andGi j is a 2D Gaussian withσy = (1

2)σx rotated with respect to the gradient
direction usingR(θ j). The votes are collected at the receiver fromN of its neighboring
voters, and combined using a summation of 1D, periodic Gaussians shifted with respect
to the ballot form, to create the ODF as follows:

ODFi (θ) = α [ξi (θ) ·ρi ]+ (1−α)

[

N

∑
k=1

BS
ik ·G2π

(

BF
ik,σ

)

]

(5)

ξi (θ) =

{

1 θi = θ
0 otherwise

(6)

wherek 6= i, α is the diffusion coefficient and theG2π is a periodic Gaussian, which is a 1D
Gaussian sampled between [-3,3] to correspond with angularvalues between [0,2π)), as
the ODF data, in polar-form, is also periodic. Once every node has tallied their respective
collection of ballots into an ODF, the iterative process continues to diffuse the information
as per theiterative, asymmetrical diffusionequation 7:

ODFt
i (θ)=

N

∑
j=1

[

βi j
(

α ·ODFt−1
i (θ)

)

+(1−βi j )
(

(1−α) ·ODFt−1
j (θ) ·ODFt−1

j (φi j )
)]

(7)

βi j =

{

1 i = j
0 otherwise

(8)

whereODFt
i is the orientational distribution function at node ’i’ at iteration time = ’t ’ and

ODFt−1
j (φi j ) is the ODF-shaped ROI term. This form of diffusion uses the ODF at a node

both as the ballot that is being propagated to its neighbors and asthe region of influence
(ROI) function to determine the ballots’ strength. An illustration of this process is shown
in figure 6b where theV shaped ODF at voter ’j ’ is propagated to receivers (i, i + 1);
however, with less strength to ’i +1’ as it is less aligned with the underlying ODF-shaped
ROI.

4 Results and Discussion

To investigate the importance of the ODF-shaped ROI term in the asymmetrical diffusion
of equation 7, two different versions of the iterative process were implemented. The first
replaces this term with an isotropic, 2D Gaussian function while the second implements
the ROI as per equation 7. Both the isotropic and the ODF-shaped ROI functions were
applied to the test cases shown in figure 4(a,b) and are depicted in figure 7.

The first column depicts the results of the initial voting stage as per equations (2-6).
The second column denotes the application of the isotropic ROI function. With this ap-
proach, the results are propagated from the voter nodes to the receiving nodes without a
bias towards the underlying estimate at the voting node. Although the results are satisfac-
tory, figure (7b,f), the ODF information becomes blurred as is expected with an isotropic
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Figure 7: Top row: results against slanted T input, bottom row: against slanted X input of
figure (4a-b) respectively. First column: results after initial voting stage, second column:
results after ten iterations with isotropic ROI function, third column: results after ten
iterations with ODF-shaped ROI function and fourth column:close-up ODFs from central
position (6,6) from the third column. All node-wise ODFs have been normalized such that
black-white ODFs correspond to high-low certainty values respectively.

approach. With the ODF-shaped ROI, information is diffusedin a logical fashion by se-
lectively updating the receiving nodes most likely to sharecommon properties and are
illustrated in the third column.

The second test was to apply the iterative, asymmetrical diffusion process to the
spatio-temporal slice of the garden sequence in figure 1b. Itshould be noted that this
real-world image sequence is not restricted to horizontal motion whereby junctions are
solely a result of occlusion. Other phenomenon, such as vertical motion, may give rise to
junctions in the slice image; however, it remains a standardbenchmark in motion analysis
and occlusion detection, via junction analysis, is a first stage within that process. In figure
8, results are shown for the identified locations from figure 1b. The top row of figure 8
indicates the ODFs calculated per node overlaid on the original image data, the middle
row are results after one iteration, and the bottom row show results after ten iterations
and illustrate how locations of junctions remain stable across iterations through its three-
lobed appearance. At location ’C’ (figure 8, third column) the ODFs tend to smooth out
towards standard symmetrical responses as expected. Theseresults were obtained with
the ODF-shaped ROI function, as per equation 7.

5 Conclusion

An iterative, asymmetrical diffusion process is proposed to create local, orientation dis-
tribution functions. These ODFs can be used to identify T-junctions, through their three-
lobed appearance, to identify occlusion within a spatio-temporal slice or provide features
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Figure 8: Top row: close-up of regions A,B,C from figure 1b with overlaid results for ten
iterations (t = 10), and respective close-ups from top row (denoted by blackrectangles)
for t = 1 (middle row) andt = 10 (bottom row)

for detection/segmentation applications in general. Future areas of work will explore us-
ing the coherence value of the structure tensor for the variance in equation 5 to add further
robustness to the process and investigate the framework within the 3D domain.
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