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Abstract

We introduce an automated image mosaicing system
using a limited number of cameras arranged along a
wide baseline, which generates a perceptually acceptable
panorama of an indoor environment, including human sub-
jects at varying depths. The target application for this re-
search is the production of a seamless, extra-wide display
for videoconferencing. In such a case, we deliberately em-
ploy a configuration of translated cameras in order to pre-
serve sensible semantics of eye contact for a viewer lo-
cated toward the sides of the display. This is preferable
to co-locating the cameras at a common center position in
an attempt to approximate the case of rotation-only cam-
era movement. Our system applies feature-based and di-
rect image alignment techniques to register the input im-
ages, and then creates the final image mosaic through multi-
perspective projections. The competitive results of our work
with current state-of-the-art techniques are discussed.

1 Introduction

Image mosaicing is a generic term referring to the pro-
cess of combining a group of images to generate a result
that has a wider field-of-view (FOV) and at least an equiv-
alent resolution to the individual inputs. Early applications
stitched together a set of images taken by handheld cameras
to construct wide-angle, seamless panoramas [5][8]. For
input images taken by cameras rotating around a fixed pro-
jection center, Shum and Szeliski [12] applied both global
bundle adjustment and local patch-based deghosting to im-
prove the quality of the resulting mosaics. Brown and Lowe
[4] introduced a feature-based approach to recognize and
align images for the generation of a high-quality panorama
of distant (i.e. essentially co-planar) scenes. Peleg et al.
[10][11] and Zhu et al. [13] eliminated the restriction of a
fixed projection center and generated image mosaics based
on a translationally dominant camera motion, provided a
relatively dense image sampling.

Although there are many successful applications of this
technique, image mosaics suffer from ghosting errors due
to parallax. Satisfactory results are obtained only when the
following constraints hold:

• camera rotation with a fixed projective center [12],

• dense sampling using a large number of overlap-
ping camera views, as is obtained in the video se-
quence from a camera moving around the environment
[11][13],

• limited depth variance in the scene, i.e. approximate
co-planarity along the direction normal to the camera’s
optical axis [4].

Indoor environments, which are typically characterized
by large variances in depth, are thus problematic cases for
mosaicing algorithms when the projection center of the
camera is not fixed. Peleg et al. [10] addressed this prob-
lem by using a dense sampling approach of a static envi-
ronment, based on a pushbroom camera model. Gorges et
al. [6] recently introduced the idea of reducing parallax-
induced mosaicing errors by decomposing the scene into
planar sub-scenes and creating mosaics for each plane indi-
vidually. However, the example provided by Gorges for an
office scenario assumed that the primary objects could be
represented as polyhedrons, which is unlikely to be the case
for humans.

Our goal is to develop an affordable image mosaic-
ing system that generates seamless high resolution panora-
mas including both human participants and their associated
backgrounds, automatically, using only a limited number of
cameras. The obvious challenge is how to do so despite the
unavoidable problems of parallax.

2 Camera Configuration

We use a limited number of cameras to acquire image
content simultaneously from a wide field of view. There are
two possible arrangements to consider: a rotational config-
uration in which the cameras are closely located and rotated



around a common center of projection, as in Figure 1(a),
or a translational configuration, with the cameras mounted
along a wide baseline and facing the same direction, as in
Figure 1(b). The resulting mosaic is rendered so that the
dominant foreground objects (people) appear life-size over
the display.

In order to generate a result in which people (or objects)
near the sides of the display appear in a perceptually con-
sistent manner to the remote viewers directly facing them,
it is important to keep the social cues such as eye contact
and sense of pointing direction, as would be the case in the
translational configuration. In the example of Figure 1(a),
with all the subjects looking at the same target (lower right),
the co-located cameras capture gaze direction of all the sub-
jects as being at the same angle, θ to the optical axis. This
results in a mosaic that is rendered as if all the human sub-
jects are viewing parallelly towards certain targets, which is
conflict to the true situation as shown in Figure 1(b). In con-
trast, the translational configuration captures different gaze
directions of the subjects in front of each camera, and thus,
the mosaic appears perceptually correct in the area in front
of viewers, regardless of their positions.

Figure 1. (a) rotational camera configuration:
each camera captures gaze direction at the
same angle θ to the optical axis (b) transla-
tional camera configuration: gaze direction
with respect to the optical axis is preserved
more closely for each camera

3 Background Theory

Image mosaic construction requires a step of image
alignment, or registration, which finds the transformation
between pixel coordinates of neighboring input images, fol-
lowed by image stitching, which warps and pastes the rele-
vant content from the input images to the reference mosaic
plane. The remainder of this section describes these tech-
niques in further detail.

3.1 Image Alignment

Image alignment algorithms estimate the parameters of
camera motion models to determine the geometric relation-
ship between images. These may be classified as either
direct or feature-based. The former find the pixel-to-pixel
matching by comparing cross-correlation values through a
window search. These utilize all the pixel information in the
overlapping regions between images and generates a more
accurate estimation of the camera motion model. However,
if the initial estimate is far from the optimal values, the algo-
rithm may take a long time to converge or may not converge
at all. In contrast, feature-based approaches estimate cam-
era motion models through the correspondence of a limited
number of features over different images. This approach is
faster than direct image alignment but it is not well suited
for images with an insufficient number of features, such as
the case with large textureless regions.

Figure 2. Two neighboring input images are
shown, with crosses indicating SIFT feature
positions. In the first row, these are re-
stricted to the human subject who appears
in the overlapping region, whereas, in the
second row, only the crosses from a nearest
neighbor match are retained. The circles in
the third row represent the RANSAC inliers,
which are used to estimate initial camera mo-
tion model parameters.

Our system takes advantage of both approaches. We use



the feature-based approach to find an initial estimate of the
camera motion model for a successive direct approach. The
initial estimation step reduces the time needed for the direct
approach to converge. The direct approach then uses all the
information in the overlapping regions to generate a final,
precise estimate of the camera motion model.

The wide baseline translational camera configuration, as
in Figure 1(b), increases the level of occlusion, which com-
plicates the search for correspondences between images.
Based on the conclusions of Mikolajczyk and Schmid [9],
we use Lowe’s SIFT features [7] as a good choice for its
invariance to scale, rotation, color, intensity, and geomet-
ric distortion. For every two neighboring input images, we
first calculate SIFT features, then use a nearest neighbor al-
gorithm to find the candidate matches of features between
them. The Hough transform is used to cluster these matches
into different groups, each of which satisfies a respective
camera motion model. We then apply RANSAC to the
group of candidate matches with the highest probability and
separate this group into a set of RANSAC inliers, geomet-
rically consistent with the estimated camera motion model,
and inconsistent outliers. Based on the inlier feature corre-
spondences, RANSAC also generates an initial estimate of
parameters for an affine camera motion model, which repre-
sents the transformation between two neighboring images.
Figure 2 illustrates how the initial estimate of camera mo-
tion model is obtained from the two input images.

Finally we use the Lucas-Kanade algorithm [2][3] to ar-
rive at the final estimate of the camera motion model, updat-
ing the initial estimate iteratively until the overlapping re-
gion between two neighboring images is correctly aligned.

3.2 Image Stitching

For a group of translated cameras located along a wide
baseline and covering a wide field-of-view, manifold pro-
jection [10] provides an efficient way to combine input im-
ages based on the estimated camera motion models between
them. With the estimated camera motion model, we first
warp the second (right) image into the plane of the first (left)
image and find where the two overlap. Next, we cut the first
image along the overlapping boundary to obtain a slice seen
only by the first camera. We collect all the other slices by
applying the same procedure to all remaining image pairs.
Last, we warp and paste these slices onto the common plane
to generate a final image mosaic. Since a single, translating
(dollying) camera is used to collect all the input images, we
may assume no color or intensity differences between these.
The merging of slices is simply a weighted summation of
pixel color values along the merge boundary.

One advantage of manifold projection is that it results in
less distortion of objects on the borders of a wide field-of-
view in the final image mosaic. If instead, we use one of the

input images as a reference and project all the other images
onto its coordinate system, pasted slices from those cameras
furthest from the reference will exhibit greater distortion in
the final mosaic, because perspective projection stretches
pixels most as they are near the image boundary.

4 Experimental Results

An example result of our algorithm is shown in Figure 3
(Considering the limited space of this 4-page paper, we only
list one of our experiment results). A Sony TRV-900 cam-
era was dollyed across the room to acquire a video sequence
of a semi-static environment.1 Six frames, each of size
720×480 pixels, were selected from approximately equally
separated positions across a wide baseline, with overlap be-
tween successive images less than 50%. The resulting mo-
saic has a resolution of 3344 × 525 before cropping.

We compare our result to that obtained from Brown and
Lowe’s AutoStitch [4]. AutoStitch is a powerful tool that
automatically generates high quality panoramas when pro-
vided with images of a remote outdoor scene as input [1].
However, when applied to our data from an indoor environ-
ment, we find that both AutoStitch and our algorithm suffer
from ghosting errors due to parallax, e.g. the duplicated out-
let box, which appears behind the female subject in the left-
most two input images. Possibly due to the slight rotational
motion between successive frames, the results of Autostitch
contain arc-like connections between adjacent slices. Since
our approach combines vertical shift and rectangular warp-
ing, the generated result exhibits significantly reduced verti-
cal displacement, which is more acceptable for a videocon-
ferencing application. The most glaring problem with our
result is the stretched appearance of the individual slightly
left of center, which was due to the significantly differing
viewpoint of the camera between the second and third input
images.

Our system also has difficulty when feature extraction
fails to find correspondences in textureless regions, for ex-
ample, when foreground subjects are dressed in a uniformly
dark color. In our future work, we plan to exploit depth in-
formation to enhance the mosaic result regarding to these
limitations.

5 Conclusions and Future Work

We introduced an automated image mosaicing system
that generates mosaics of human objects in an indoor envi-
ronment, suitable for wide field-of-view videoconferencing
applications. Our approach uses both feature-based and di-
rect approaches to improve the accuracy and efficiency of

1The human subjects were asked to remain still during the filming.



Figure 3. A sample mosaic result from six input images, compared with AutoStitch[4].

image alignment results, and the strategy of multiple per-
spective projection reduces object distortion near the bor-
ders. Together, these techniques improve robustness to the
violation of parallax-free constraints, as is the case in most
indoor environments.

In our future work, we hope to scale the system to real-
time operation and address the problem of ghost errors due
to 3D parallax. Ghost errors are of particular concern for
environments containing many people, as they are percep-
tually much more distracting when they affect a human face.
In this regard, manifold projection offers another impor-
tant advantage, as it generates an image mosaic as being
approximately taken by a slit or pushbroom camera. Pro-
vided that we can synthesize a sufficient number of (virtual)
inter-camera frames along a wide baseline, these ghost er-
rors caused by parallax can be avoided.
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