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Abstract. Junctions form critical features in motion segmentation, im-
age enhancement, and object classification to name but a few application
domains. Traditional approaches to identifying junctions include convo-
lutional methods, which involve considerable tuning to handle non-trivial
inputs and diffusion techniques that address only symmetric structure.
A new approach is proposed that requires minimal tuning and can dis-
tinguish between the basic, but critically different, ‘X’ and ‘T’ junctions.
This involves a multi-directional representation of gradient structure and
employs asymmetric tensor diffusion to emphasize such junctions. The
approach combines the desirable properties of asymmetry from convolu-
tional methods with the robustness of local support from diffusion.

1 Introduction

Extracting high-level structure from image gradients is central to many com-
puter vision applications such as data interpolation, 3D scene reconstruction,
image enhancement, motion segmentation, and biometrics. Each requires a local
description of structure that includes contours and junctions. For example, pro-
cessing laser-rangefinder data or a stereo-depth map may involve interpolation of
sparse data, minimizing the effects of noise, and segmenting this information into
distinct objects [1]. Similar issues are found in the context of image enhancement
as contours and junctions denote regions where smoothing should be inhibited
[2]. In motion segmentation, identifying junctions in the spatio-temporal domain
indicate points of occlusion in a video sequence [3]. Similarly, junctions are used
to determine salient keypoints in fingerprints or defects in lumber [4, 5].

One approach to highlighting junctions is to apply diffusion, where local in-
formation is distributed to its neighbors conditioned on specific parameters and
replaced with the consensus from that data. For example, isotropic diffusion
applies local averaging, weighted by relative proximity, to produce a blurring
effect. Most diffusion methods make use of gradient information represented by
a structure tensor [6]. Although it has several benefits, the structure tensor is
limited in that it may only represent gradient in a symmetric, or π-periodic form.
This implies that diffusion using such a form also results in symmetric informa-
tion, thus preventing the distinction between ‘X’ and ‘T’ junctions from being
made. A method to convert this symmetric information into a richer asymmetric



form had yet to be incorporated into the diffusion framework. A novel, two-step
solution is presented in Section 3, which first transforms the symmetric gradient
information into a directional voting field representation and second, iteratively
applies asymmetric tensor diffusion. The results of this approach are evaluated
experimentally and contrasted with various competing methods in Section 4.
Finally, several applications and future work are discussed in Section 5. Before
describing the details of our approach, some terminology is defined and a brief
review of previous convolution and diffusion approaches is provided in Section 2.

2 Background

To motivate this work, we begin with a review of convolution-based and diffusion
approaches with an emphasis on junction analysis. For consistency of terminol-
ogy, we refer to direction as the angle of a vector with respect to the x-axis,
ranging between [0, 2π) while orientation is π-periodic ranging between [0, π)
. Symmetry in our work refers to the geometric interpretation with respect to
gradient-based contours and does not refer to the concept of symmetric matrices.

2.1 Convolution-Based Approaches

Early work in the area of convolution-based, directional distribution functions
(DDFs) began with the use of Gabor filters [7]. The DDF is created by convolving
rotated versions of the kernel at discretely sampled angles and incrementing their
respective, angular bins similar to orientation histograms [8]. (examples of DDFs
are shown in figure 3) Although the Gabor uses a quadrature pair to address
both even and odd-phased gradients, its form is symmetric thus preventing the
distinction between ‘T’ and ‘X’ type junctions directly. Asymmetric kernels were
proposed to highlight such distinctions. For example, Gaussian derivatives were
used to derive logical/linear operators and one-sided filter pairs [9, 10], while
later work by Simoncelli and Farid improved on the accuracy by designing a set
of polar-based Gabor kernels, known as wedge-filters [11].

The DDF maxima for these methods do not necessarily imply gradient struc-
ture along the direction of the maxima as they are template-matching approaches
at their core: implying that they are best suited to finding matches between pat-
terns and not necessarily designed to identify gradient structure [12]. Although
steerability has been explored in the use of such approaches, [10], they also re-
quire a large bank of filters to address different spatial frequencies [13]. Improved
results were obtained using the rotated averaging wedge method (RWAM), which
calculated average pixel values within wedge-shaped regions and generated the
DDF as the 1D derivative of these values [14]. More recent work by Michelet et
al. used a homogeneity function based on an asymmetric sampling grid to pop-
ulate the DDF, albeit without the benefit of local support through diffusion and
also requiring considerable parameter tuning [15]. Although these approaches
perform well on trivial, step-edge images, they are inappropriate for estimating
gradient direction on more complex data such as that in Figure 3a.



2.2 Diffusion-Based Approaches

The convolution-based approaches described in section 2.1 apply a kernel to the
data at a given scale to create the DDF. An alternative is to propagate gradi-
ent information from all pixels to their corresponding neighbors. This process,
known as diffusion or regularization, maintains a balance between the original
information through the data consistency term, while biasing the local model us-
ing the diffusion term [2]. The gradient data is best represented using a structure
tensor as it encodes not only the orientation and magnitude but the coherence,
as in Equations (2-4):
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where Ix is the partial derivative of image I(x, y) with respect to x, (e1, e2,λ1,
λ2) represent the eigenvectors and values from the decomposition of structure
tensor S respectively and ς is the coherence measure as outlined by Jähne that
provides a measure of certainty in gradient direction along e1 with respect to e2

[6].
Diffusion techniques can take many forms. For example, isotropic diffusion

is a common approach where data is propagated to its neighbors based solely
on relative proximity. This method reduces noise at the expense of maintaining
high gradient (edge) information. Anisotropic diffusion, reviewed in detail by
Tschumperlé and Deriche [2], preserves edges by restricting smoothing across
high gradient regions [16].

Orientation diffusion, enforces the periodic nature of symmetric gradient in-
formation through the use of a specialized influence function [17]. Several other
works refer to direction-based diffusion in the context of gradient polarity di-
rection to bolster pixel-based feature points or in the framework of color en-
hancement [18, 19]. However, the focus of our work is on a phase-independent

description of the gradient structure.
To account for more complex interaction between gradient structures, tensor

voting was introduced [1, 20]. It not only diffuses based on proximity, but also
on relative curvature as well as allowing for slowly-varying, orientational pat-
terns with a biasing parameter to favor linear rather than curved contours. This
approach is adept at handling both sparse and noisy data and requires mini-
mal memory requirements by using a single tensor representation at each node.
Relaxation labeling, which permits multiple representations [21], adds support
to those pixel locations or nodes that have compatible structures based on such
criteria as co-circularity, co-heliocity or the normal and tangential curvature
components to the tensor fields [22, 21, 23].



3 Asymmetric Tensor Diffusion (ATD)

The previously described diffusion-based approaches directly apply symmetric
information derived from the structure tensor, implying that the resulting DDFs
are also symmetric. This section proposes a technique to transform the orienta-
tion of the structure tensor data into a directional-based voting field to allow for
an asymmetric form at each node. Specifically, a voter distributes ballots to all
of its neighbors (receivers). The ballots are collected into their respective DDFs,
which are then used to seed a secondary, diffusion stage.

3.1 Stage One: Directional Voting Field

Early work in the conversion of orientation data into a meaningful, directional
voting field was proposed in [24]. The present work serves not only to clarify and
extend this concept but also to provide a means by which to properly diffuse
such information. We first determine the orientation, magnitude and coherence
of the structure tensor as per Equations (2-4). Next, an inwardly facing direc-

tional bin field, which represents the initial ballots and the spatial locations of
their corresponding receivers, is constructed. Each ballot points towards the axis
perpendicular to the orientation of the structure tensor, as per Equations 5-6.

Bij (θi, ε) =

{

θi + επ |θi − ϕij | > π
2

θi + (ε + 1) π otherwise
(5)

Ψij (θi, ε) =

{

1 − 1
2τ ≤ xij ≤ 1

2τ
1 − ε otherwise

(6)

where ε={0, 1}, Bij and Ψij denote the ballot direction and magnitude 1 respec-
tively, θi is the orientation of the structure tensor at i, τ is the minimum distance
between nodes, and ϕij denotes the angle from voter i to receiver j with respect
to the x -axis. A directional bin field created from a horizontally oriented input is
illustrated in Figure 1b, where the ballots point inward towards the vertical axis.
To account for the ambiguity in the original orientation, two opposing ballots
are placed along the vertical axis, centered on the original data. The ballots are
aligned parallel to the original orientation, rather than being steered toward the
center point to prevent biasing at this early stage of processing.

The strength of each ballot sent from voter i to receiver j is then weighted
by an anisotropic map, known as the region-of-influence (ROI) function, Λij ,
aligned with the orientation of the original data:

Λij (θi, ε) = G (0, σx) · Ψij (θi, ε) · R (θi) (7)

where G is a 2D Gaussian with zero mean and σy = qσx (Figure 1c) where q is
the sigma ratio, and R(θi) is the rotation matrix.

1 In essence, Ψ distinguishes between single- and double-ballot locations where the
latter is assigned to points of orientational ambiguity.



(a) (b) (c) (d)

Fig. 1. Stage one: structure tensor with horizontal orientation and coherence=1 (a),
Bij (b), Λij (c), and the directional voting field where both the vector magnitude and
grayscale denote their relative influence (d).

Rather than summing the collected ballots at each receiver into a single value,
a histogram of N directional bins is used to collect the ballots, as per Equation 8.
While this requires greater memory than that of anisotropic diffusion, tensor
voting, and relaxation labeling, it allows for the all-important representation of
asymmetric structures.

DDFj (ϑ) =
1

∑

ε=0

Ω
∑

i=1

S̃i · Λij (θi, ε) · m (ϑ,Bij(θi, ε)) (8)

m (p, q) =

{

1 p = q
0 otherwise

(9)

where ϑ denotes the directional bin, Ω the local neighborhood around j and S̃i

the normalized version of the original structure tensor Si. In brief, voter i sends
a ballot S̃i, weighted by Λij , to bin ϑ = Bij of receiver j.

3.2 Stage Two: Iterative Diffusion of DDF

From stage one, the DDF of each receiver is represented by a single structure ten-
sor per directional bin. This is transformed into a 1D-DDF prior to the diffusion
process using a summation of 2π-periodic, normalized Gaussians, G2π(µ, σ, x).

DDF (ϑ) =

N
∑

β=1

|Sβ | · G2π

(

θβ , σςβ
, ϑ

)

(10)

σς = (1 − ς) (σmax − σmin) + σmin (11)

Gaussians, normalized to unity area under the curve, are amplified by the mag-
nitudes, |Sβ |, where their means are centered at θβ and variances are a function
of coherence. The values of (σmin, σmax) were assigned empirically as (0.25, 2)
to vary between certain and uncertain estimates, where coherence is bounded
between [0, 1]. An example of this transformation with three populated bins of
successively decreasing coherence, is illustrated in Figure 2. The more elongated
ellipses correspond to greater coherence values, which are reflected by Gaussians
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Fig. 2. Stage Two: Three tensors at directional bins 40o (black), 230o (light-gray) and
270o (dark-gray) (a) and their corresponding Gaussians and their 1D-DDF (dashed-
line) (b), polar-equivalent (c) and associated weighted, voter-facing, ballot field (d).

of lower variance. These are summed to form the 1D-DDF, which is then con-
verted into a 2D weighting map with radial-based decay as per Equation 12 and
illustrated in Figure 2d.

Λ̂ij =
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


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1 ρij < DDF (ϕij)
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[

π
2

(

ρij−DDF (ϕij)
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)]

DDF (ϕij) ≤ ρij ≤ DDF (ϕij) + ρmax

0 otherwise
(12)

where the hat notation of Λ̂ reflects the second stage, ρij is the Euclidean distance
between nodes i and j, and ρmax denotes the degree of radial decay. Here, each
receiver j, obtains a single ballot from voter i, corresponding to the DDF value
at i pointing towards j. This ballot increments a directional bin at j that points
towards i. We refer to this arrangement as the voter-facing ballot field. The DDF
is then updated as:

DDF t
j (ϑ) = α ·DDF t−1

j (ϑ) + (1 − α) ·

Ω
∑

i=1

Λ̂ij · DDF t−1
i (ϕij) · m (ϑ, (ϕij + π))

(13)
where t refers to the iteration step and α denotes the diffusion coefficient. An
example of the voter-facing ballot field is illustrated in Figure 2d.

Our approach offers many advantages. First, the only free parameters to tune
are the sigma ratio q for G (empirically set to 1/2) and the scale that dictates
the range over Ω. Second, by diffusing non π-periodic DDF information, local
support is enforced at the pixel level. Finally, this method can also represent
endpoints as well as curved structures using the DDF form.

4 Experimental Evaluation

The ATD method is first compared to the convolution approaches against a
T-junction image. Next, it is contrasted against the diffusion methods for two
tensor field layouts. Finally, ATD is applied to two real-world applications. For
all trials and algorithms, N=36.



4.1 Results Against Convolution Approaches

A test-image having asymmetric gradient information derived from several spa-
tial frequencies was used, as shown in Figure 3a. All methods used a scale to
match the image of 11x11 pixels. Parameters were tuned for best results against
a step-type corner swatch: exemplifying the need for a bank of filters for con-
volution approaches. The Gabor identified the horizontal orientation; however,
was incapable of distinguishing the lack of a downward gradient direction as the
filters themselves are symmetric. The one-sided, wedge filter and RWAM fall vic-
tim to the presence of several pixel-values along orientations that do not radiate
from the center of the image while the ATD properly depicts the three gradient
directions.

4.2 Results Against Diffusion Approaches

The test sets used to compare with the previous diffusion methods depict an ‘X’
and ‘T’-shaped structure tensor layout (Figures 4(a,g) respectively). Note that
the DDFs shown are from the annotated points ‘P’ and ‘Q’. For the isotropic,
anisotropic and tensor voting methods, the DDF is represented by a single struc-
ture tensor and visualized as an ellipse oriented along e1 with major and minor
radii corresponding to (λ1, λ2). From their results, it is not obvious whether it
resulted from two, perpendicular tensors, or a single tensor with less certainty
without further processing. While relaxation labeling was able to distinguish the
two orientations, only the ATD could disambiguate between the two cases.

(a) (b) (c) (d) (e) (f)

Fig. 3. (a) Input image and resulting DDF’s for (b) Gabor, (c) one-sided [10], (d)
wedge filters [11], (e) RWAM [14] and (f) ATD

4.3 Results with Real-World Data

Junction structures are key to occlusion detection in video sequences as occlusion
is denoted as splitting or merging of contours [3]. Using the flower garden se-
quence, a spatio-temporal slice was extracted and ATD applied. Close-ups of the
annotated locations of Figure (5d) correspond to occlusion, disocclusion and no
occlusion respectively. The scale used was 9x9 and DDFs reflect three iterations
for this experiment.
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Fig. 4. Top row: X-junction test case and bottom row: T-junction test case. 1st column:
initial test layouts, 2nd column: isotropic, 3rd column: anisotropic, 4th column: Tensor
Voting [1], 5th column: Relaxation Labeling [22] and 6th column: ATD.
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Fig. 5. Two images from the flower garden sequence (a,b) with the corresponding
spatio-temporal volume (c), where a 2D slice is taken from y=80 (d), indicating three
sample locations:‘A’,‘B’,‘C’ denoting occlusion, disocclusion and no occlusion respec-
tively. The initial gradient orientations (e,f,g) and resulting DDFs from proposed ap-
proach (h,i,j) taken from the center of the sample regions



Junction are also important in fingerprint analysis. A trivial junction model
was implemented as a proof-of-concept. For a given DDF, lobe-based features
were depicted at DDF maxima with an associated saliency equal to the area
of said lobe (integral between the maxima’s left and right-wise local minima).
Lobes having a saliency of less than 10% of the maximum saliency per DDF were
trimmed. Figures (6(b-e)) depict the identification of nodes with a 1,2,3 and 4
lobes respectively.

(a) (b) (c) (d) (e)

1

2

3

4
(f) (g) (h) (i) (j)

Fig. 6. Fingerprint (a) and its sub-image (f), junction classification for 1,2,3 & 4 lobes
(b-e) respectively with DDF close-ups corresponding to labels (1-4)from (f) in (g-j).

5 Conclusion

A novel approach of transforming symmetric gradient information into asym-
metric DDFs is proposed, along with a method by which to diffuse them. The
accuracy is shown to be an improvement over current convolution-based ap-
proaches and the asymmetric representation allows for the distinction between
non-π periodic structures. Future work will investigate a multi-scale as well as a
3D implementation.
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