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ABSTRACT
Sonification can play a significant role in facilitating continuous,
gesture-based input in closed loop human computer interaction,
where it offers the potential to improve the experience of users,
making systems easier to use by rendering their inferences more
transparent. The interactive system described here provides a num-
ber of gestural affordances which may not be apparent to the user
through a visual display or other cues, and provides novel means
for navigating them with sound or vibrotactile feedback.The ap-
proach combines machine learning techniques for understanding a
user’s gestures, with a method for the auditory display of salient
features of the underlying inference process in real time. It uses
a particle filter to track multiple hypotheses about a user’s input
as the latter is unfolding, together with Dynamic Movement Prim-
itives, introduced in work by Schaal et al [1][2], which model a
user’s gesture as evidence of a nonlinear dynamical system that has
given rise to them. The sonification is based upon a presentation
of features derived from estimates of the time varying probability
that the user’s gesture conforms to state trajectories through the
ensemble of dynamical systems. We propose mapping constraints
for the sonification of time-dependent sampled probability densi-
ties. The system is being initially assessed with trial tasks such
as a figure reproduction using a multi degree-of-freedom wireless
pointing input device, and a handwriting interface.

1. INTRODUCTION

The research discussed here intends to improve the design of gesture-
based interactions with the widening range of computational arti-
facts supporting continuous input. These comprise new computer
input devices, video games, musical instruments, and an increas-
ingly ubiquitous class of everyday artifacts that possess hidden
computing, sensing, and actuating capabilities. Already famil-
iar examples of the last include running shoes and wireless video
game controllers. In the context of human-computer interaction,
user experience may be improved if continuous, gesture-based in-
put is situated in complete sensory-motor feedback loops. Non-
visual display modalities have some advantages for such closed
loop interactions, as they can more easily be situated at the locus
of interaction of an arbitrary input device. Other benefits include
their ability to provide an effective representation of temporal fea-
tures and to operate in situations in which the visual modality is
overtaxed, both of which have been discussed extensively in pre-
vious literature [3][4].

The system described below tracks the state of a user’s ges-
tures, as relayed by the sensors of a continuous input device, and
continuously estimates a correspondence with a number of gestu-
ral affordances. The latter are encoded as nonlinear dynamical sys-

tems models that are learned from a gesture dataset, as explained in
Section 2.1. A particle filter algorithm is used to track hypotheses
as to the correspondence between the user’s input and the models.
The information provided by this inference mechanism is used to
generate a sonification to allow users to guide their gestures rela-
tive to those afforded by the system.

1.1. Related work

A particle filter based recognizer for generating sonic feedback to
display a user’s input in a mouse gestures task, and in related ap-
plications such as a helicopter control task, has been described by
Williamson and Murray-Smith [5][6]. Their recognizer appears to
be built on static template models of the gestures afforded by the
system. The system presented here is similar, but uses the dynam-
ical systems models of Schaal et al [1][2], which encode the dy-
namics of the motion more richly than is possible with templates.
The dynamical systems models have an advantage in their ability
to representing dynamically driven variations in the detailed path
taken while preserving other features of the trajectory (see Fig-
ure 3). In the present contribution, we also address aspects of the
problem of sonifying sampled representations of state-probability
distributions that are complementary to those that Williamson and
Murray-Smith have described, and in particular raise questions
of sample-set independence and perceptual salience of parameter
mappings for sonification.

Strachan and Murray-Smith [7] described explorations with
gesture input for mobile devices based on the same Dynamic Move-
ment Primitives models that are adopted here. However, the main
focus of the present contribution relates to issues of closed-loop
interaction that were not entirely addressed in their application.
Furthermore, the gesture recognition architecture described here is
somewhat richer, capable of tracking over time an arbitrary prob-
ability density representing the correspondence between a user’s
gesture and an array of models.

Jenkins et al [8] have described a video-based recognition sys-
tem that uses movement primitives based on an ensemble of recorded
exemplars (essentially templates), together with a particle filter.
Their approach is similar to the forward path of the architecture
presented here, except that the movement primitives in the present
contribution are based on dynamical systems models, which offer
the relative advantages noted above.

Particle filters were first applied to the problem of the recogni-
tion of gestures observed in video sequences using static temporal
templates in work by Black and Jepson [9]. A wide range of parti-
cle filter based methods for gesture recognition have built on their
original work.

Many other gesture recognition techniques are discussed in the
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Figure 1: Architecture for gesture-based control, integrating dy-
namic movement primitive (DMP) models of the encoded ges-
tures, with a particle-filter based inference mechanism, and an in-
teractive sonification.

literature, including hidden Markov models (HMM), time-delay
and recurrent neural networks, and dynamic programming algo-
rithms, among others. Distinct advantages of the gesture modeling
method we have adopted include its fine time-granularity, which is
desirable in a closed loop interactive system, and its robustness to
variations in the specific path an instance of a gesture may take.
The fact that the system presented here incorporates generative
models for the gestures provides, in addition, an important check
as to whether the employed model has captured the phenomena it
aimed to encode.

Further comparison of sonification methods invoked here with
those used in past literature is provided in section 3.

2. GESTURE INPUT ARCHITECTURE

An overview of the system is shown in Figure 1. Gesture-based
input from the user is acquired by the input device’s sensors as
an N -dimensional temporal trajectory. A set of particles, given
by weighted states of the nonlinear dynamical systems, is evolved
in tandem with the gestural input. They maintain a probability
distribution that tracks the system’s belief as to the correspondence
between the user’s input and learned models. The error signals
and weights that result are then used to derive parameters for a
sonification. These stages are described in more detail below, and
the detailed algorithm is illustrated in Figure 2.

2.1. Nonlinear Dynamical Systems Models

The Dynamic Movement Primitives (DMP) models of Schaal et al
[1][2] are adopted as nonlinear dynamical systems predicting the
trajectory followed by a given gesture. An instance of a gesture is
characterized by a trajectory z(t), consisting of a vector of values
(z1, z2, . . .) sensed from an input device over some time interval
t ∈ [0, T ]. The DMP models the kinematics of the gesture trajec-
tory with an adaptive nonlinearity f .

The system equations describing each component z = zi of
a gesture are composed of a canonical system and a transforma-
tion system. The canonical system is an attractor that numerically
integrates a phase variable φ that substitutes for the role of time:

ν̇/τ = αν(βν(1 − φ) − ν), φ̇/τ = ν . (1)

The transformation system numerically integrates the dynamical

variables zi, żi, z̈i that describe each component of the gesture tra-
jectory. The equations for each component are:

u̇/τ = αu(βu(s− z) − u) + f(φ, ν), (2)

ż/τ = u, ṡ/τ = αg(g − s) (3)

Each α and β pair represents time constants that are chosen for
critical damping of the respective system, τ is a temporal scaling
factor, and the goal g gives a target value for z to reach at the end
of the trajectory. The term f(φ, ν) represents a nonlinearity given
the form of a weighted sum of Gaussian basis functions:

f(φ, ν) =

PM
i=1 ψiωiνPM

i=1 ψi

, ψi = exp
`
−hi (φ− ci)

2´
.

These basis functions are suitable for point-to-point gestures, pos-
sessing a velocity dependence that insures that they vanish at the
endpoints of the movement. The centers ci and bandwidths hi are
chosen so that the ψi are uniformly distributed over φ ∈ [0, g].
The weights ωi are adapted using a regression procedure such that
the dynamics approximates the gesture’s trajectory. Further details
are provided in a related publication [10].

By contrast with finite-state based models like the HMM, where
the gesture is captured by statistics associated with a sequence of
discrete states, here it is encoded in the dynamical parameters of
the DMP. The latter is capable of synthesizing a smooth instance
of a gesture that may be varied through parameters that govern its
position z, velocity ż, temporal scaling factor τ , and target config-
uration g.

Figure 3 shows several resynthesized examples of a hand-drawn
figure corresponding to a horseshoe-shaped gesture. The trajecto-
ries correspond to varying the initial configuration of the DMP.
Other model parameters can varied likewise. The learned figure
acts as an attractor for the writing motion, which is qualitatively
different from the notion of a fixed template or statistical model.

2.2. Particle Filters for Gesture Input

The particle filter tracks the system’s belief over time as to the
user’s intended action, i.e. the correspondence of the latter with
the gesture models encoded in the system. The algorithm used

User Input

Gesture Training 
Instances

DMP Trainer 
(Exact or 

Incremental)

Initialize Particle 
States, Weights

Particle 
Distribution

Update Particle 
States

DMP NLDS 
Models

Recalculate 
Particle Weights

Calculate Input-
Particle 

Likelihoods

Importance 
Resampling

Estimate Error 
Feature

Sonic Feedback 
Synthesis

Gesture 
Inference

weights 
degenerate

?

Y

Particle Filter
NLDS Models

Figure 2: The gesture input, inference and sonification generation
scheme.
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Figure 3: Several instances of a learned gesture that has been
resynthesized by one of the DMP, starting from an ensemble of
different initial conditions.

is the regularized sequential importance resampling (SIR) parti-
cle filter [11]. N weighted samples are employed to approxi-
mate the input gesture over time. The samples consist of states
xt = (c,yt, ẏt, gt, τt) characterized by:

• c A class index, indicating the DMP model whose state is
being tracked

• yt A vector quantity providing the instantaneous value of
the gesture being modeled at time t

• ẏt A vector giving the instantaneous velocity of the gesture

• gt The current target (destination posture) for the gesture

• τt The current temporal scaling factor for the gesture, rel-
ative to 1

At each time step, the weight for each particle is determined by a
likelihood function giving the probability that the observed input
trajectory Zt = {zi, i = 1, . . . , t} up to time t corresponds to
the trajectory Xt = {xi, i = 1 . . . t} followed by that particle.
We adopt a likelihood function generalized from that presented by
Black and Jepson in [9], given by

p(Zt|Xt,k) =
Z−1

det1/2 σk

exp(−βD(zi,yt,k)) (4)

k is the index of the kth particle, β is a hand-tuned parameter
governing the correlation length of the fitness function, and σk is
an estimate of the prior variance of y for the class of particle k.
A diagonal covariance is estimated from training instances. D is
the `2 distance between the particle trajectory and the input on the
given time window:

D(zi,yt,k) =
1

N

tX
i=t−n

(zi − yi,k)Tσk(zi − yi,k)) . (5)

The normalizing factor Z in (4) is the sum over unnormalized fit-
ness functions for all particles,

Z =
X

k

1

det1/2 σk

exp(−βD(zi,yt,k)) . (6)

The tracking process for each particle at each time step proceeds
as follows:

1. Update the parameters yt, ẏt by integrating one time step
of the corresponding DMP

2. Update the weightswt = p(Zt|Xt,k) using the fitness func-
tion of eq. (4)

3. If the effective particle count Neff = (
P

k w
2
k) has fallen

below a threshold, perform an importance resampling of
the probability distribution, drawing Np new particles from
it to replace the old. m copies of the jth particle are cre-
ated if it is drawn m times. A regularization step is used to
optimally perturb the state parameters, so particles that are
duplicated have nonidentical states [11].

The result is a set of particle trajectories that track hypothesis
states, together with a set of evolving weights indicative of the
fitness of each of the particle trajectories in describing the input
gesture. The trajectories are discontinuous, due to the resampling
stage.

2.3. Recognition

While gesture recognition is not the focus of this paper, the frame-
work delineated above allows one to infer the probability that each
gesture is being performed, and these probabilities may be com-
puted in terms of the fitness functions p(Zt|Xt,i). Assuming each
of the N gesture classes to be a priori equally likely, the proba-
bility of a class c given the observed gesture Zt to time t may be
obtained from Bayes’ theorem:

p(c|Zt) =
p(Zt|c)p(c)
p(Zt)

=
p(Zt|c)
Np(Zt)

=

P
k∈c p(Zt|Xt,k)

Np(Zt)
. (7)

Where the last sum is over particles having the class label c. This
equation determines the class probability given the input, within
an overall factor p(Zt) that is independent of the class. A ges-
ture can be deemed to have been recognized if this probability is
greater than a given threshold and the phase variable φ is near to
the maximum phase value of 1.

3. SONIFICATION FOR GESTURE INFERENCE

The output of the gesture input system described above consists of
a set of weightswt,k and states xt,k at each time instant t. Together
these furnish a sampled representation of the time-varying proba-
bility distribution p(Zt|Xt) that tracks the system’s understanding
of the gesture of the user.

Broadly stated, the role for sonification in this system is to
convey information in order that users may better guide their ac-
tions relative to the inferences made by the system. The approach
adopted hre is that of parameter mapping [12], which extracts mean-
ingful values from the system state in order to drive the parame-
ters of a sound synthesizer. The current situation, in which the
output of an interactive system is fed to a sound synthesis engine,
is notably analogous to the mapping problem encountered in the
control of sound synthesis with digital musical instruments [13].
A key problem in parameter mapping approaches to sonification is
the determination of salient parameters for display, which is analo-
gous to the control mapping problem in digital musical instrument
design. We describe criteria we have adopted for doing so, indicate
their use in a synthesis example, and compare with alternatives that
others have used in similar systems.

3.1. Considerations for Parameter Mapping

Considerations relevant for sonification in the present system in-
clude the fact that the interaction is continuous in time, that the
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Figure 5: The signature of a resampling event in the recognizer, in
which the evolving weights (shown here) and states of the particles
(not shown) change discontinuously whenever a new sample set is
drawn from the probability distribution.

states are composed of both discrete (class indices) and continuous
(configuration) variables, and that both continuous and discontin-
uous changes in the time series of values wt,k, xt,k are present.
Discontinuities are the result of resampling steps, as illustrated in
Figure 5, at which the probability distribution is unchanged while
the sample set is redrawn. The latter changes are arbitrary, so that
one wants to choose parameters and synthesis methods such that
the sonification is independent of the choice of sample set.

One way to achieve this would be to ensure that parameters
are extracted from sample-set invariant features of the probability
distribution. All meaningful information contained in the system is
accessible through the expectation values of functions of the state
variables, which can in principle supply as detailed a description
of the system state as desired. For example, one could adopt the
instantaneous expected squared error in the estimate of the input
trajectory, which is given by

E{||y − z‖|2} =

NpX
k=1

wt,k||yt,k − zt||2 (8)

As the number of particles Np grows, the expectation value can
be estimated with increasing accuracy, independent of the partic-
ular sample set. The ability to compute such quantities is a key

wt,k||yt,k− zt||2

xt,k
Xt

Amplitude

Frequency

Figure 6: Example of a spectral synthesis display for the expected
squared error of the gesture trajectory.

advantage of Monte Carlo probabilistic methods like the particle
filter.

A better way to achieve sample set independence – and one
that may intrinsically preserve information – is to present the en-
semble of contributions of the various particles in such a way that
the auditory display preserves features such as expectation values
as perceptually identifiable aggregate properties of the synthesized
sound, such as its spectral envelope or other psychoacoustic fea-
tures. As an example, rather than presenting the expected value of
equation (8), one could display the ensemble of weighted particle
errors, given by

ξt,k = wt,k||yt,k − zt||2, k = 1, . . . , N . (9)

A mapping of the state configuration trajectory yt,k onto the fre-
quency of sinusoidal components of a spectral synthesis model,
and of the weighted particle squared errors ξt,k onto the ampli-
tudes, would present the quantity (8), for example, as the area un-
der under the curve given by the sound’s spectral envelope at time
t. See Figure 6. In such a case, the display (here, the spectral
envelope) contains more information than the area alone, so with
a judiciously chosen mapping, the presentation of features ξt,k is
more informative.

As a further example for the display of the system state during
interaction, one can consider a feature derived from a measure of
relative jerk between the prediction and user input. Jerk is the time
derivative of acceleration. This is a quantity that the human senso-
rimotor system attempts to minimize during movement planning,
essentially to ensure smooth movements [14]. Such a quantity may
be given for each particle k at each time t by

Jt = || d
3

dt3
(yt,k − zt)||2 (10)

It might be employed to reinforce the idea that users’ movements
smoothly track the evolving state of the model over time. As the
third derivative of a numerical quantity is by nature highly suscep-
tible to noise, filtering is required to smooth the values that result.
(We apply a simple rectangular window based smoothing opera-
tor.) A set of weighted particle jerks corresponding to the gestures
shown in this section are displayed in Figure 7.

Other features of the probability density can be preserved with
similar mappings. The display of probability densities themselves,
via the weights wt,k, may be significant toward revealing the de-
gree of ambiguity with which the user’s input is being interpreted,
while the display of error-based functions provides a feedback that
assesses more directly the difference between the expected and
actual trajectory of sensed configurations of the input device. A
range of sonification features mentioned here and elsewhere in the
literature are listed in Table 1.
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Figure 7: Examples time series of sonification features given by
weighted particle jerks wt,kJt,k. Those plotted here correspond
to a subset of particles tracking a single gesture class for a user’s
handwritten figure. Time runs along the horizontal axis.

An improved understanding of the utility of the possible addi-
tional dimensions of feedback for improving control performance
is an appropriate goal for research in this area. Another is to de-
termine which features may be most useful in allowing users to
perceive an array of affordances expressed as co-evolving states to
that driven by the user, as in a system like that described here.

3.1.1. Sound Synthesis Method

The main focus of the present contribution is not sound synthesis
methods. However, we have implemented synthesis models to test
this framework. In one of these, the particle features described
above are mapped onto an ensemble of time-varying resonances.
For each particle trajectory, we make the correspondence shown in
Table 2. The resonator model is excited with a noisy residual, and
as a result, the jerk is mapped onto the noisyness of the given par-
tial. In this way, as the user performs a gesture, the resonances of
the model track the state, but become more noisy when the user’s
movement relative to the model flow is less smooth.

As an example, in an instantiation of the system with 1000
particles, the total number of resonances is nominally 1000. If
the application demands it, because most of the particle weights
are small, a threshold can be used to reduce the number of active
resonances to a small enough value.

Figure 8 shows waveform and spectrogram images of the re-
sulting sonification for a user’s input gesture.

3.1.2. Limitations

In addition to the state configuration yt,k, it is desirable to en-
code the class ck in the sonification, so that the jerk attributable

System parameter Synthesis Parameter
Jt,k bandwidth of resonance (α, k) at time t
wt,k amplitude of resonance (α, k) at t
||yt,k|| frequency of resonance (α, k) at t

Table 2: Sound synthesis parameter correspondences for our soni-
fication method. In each case, the input parameters are scaled and
shifted to map onto the desired range of the output parameter.
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Figure 8: Waveform and spectrogram images of the sonification
generated in response to the user’s input shown at top. User’s in-
put can be discerned as dotted black curve in top image. Both
correspond to particles constrained to a single gesture class.

to different dynamical models might be sonified in distinct ways
even as the sonifications relative to distinct gesture classes are
generated simultaneously. The synthesis method used here does
not necessarily suggest a canonical parameter mapping that would
accomplish this. However, due to the continuity of the acoustic
profile of the trajectories (for example, in frequency, amplitude,
and bandwidth), the user’s own perception may, under appropriate
conditions, be relied upon to group sounds originating from dis-
tinct classes appropriately into distinct scenes, via gestalt mecha-
nisms [15]. We have experimented with encoding the class label
in the rapid rhythmic pattern of distinct excitation sources, so as to
augment the perceptual coherence of the data sources themselves.

3.2. Related Methods for Interactive Sonification

The situation discussed here fits within the domain of interactive
sonification [16], and while there are several potentially relevant
works from the past literature on this subject, a few are more useful
for comparison with our method.

Hermann and Ritter [17] have approached the sonification of
static data sets by constructing virtual physical systems around
them that may be excited by a user. In one case, they describe
exploring a set of potential wells through the sonification of the
dynamics of an auxiliary particle system, using an audification of
the kinetic energies of the particles [18]. Since we do not have
the freedom to design the particle dynamics of our system, such
an audification would not typically be suitable, as the data rate and
system dynamics are not, in general, appropriate for generating of
a sound signal with a perceptually relevant range of frequencies or
temporal dynamics. This is why we have used a parameter map-
ping approach.

Williamson and Murray-Smith discuss in detail the utility of
granular synthesis for the display of probabilistic feedback, and re-
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System parameter Name Possible display role
wt,k Particle weight (conditional probability) Display ambiguity among hypotheses

Display the proximity of specific alternatives
yt,k Particle state Display the state of a hypothesis about the input

||yt,k − zt|| Particle error Display the error of the input relative to a hypothesis
Display a class or ensemble error

dm(·)/dtm mth derivative of any of the parameters above Display the current trend
Quicken the display (discussed in [6])

Jt,k = || d3

dt3
(yt,k − zt)||2 Relative jerk Display input smoothness relative to model control policy

Table 1: Candidate parameters for the display of the particle-based gesture input system.

lated issues associated to improving gestural control over interac-
tive systems [6][5]. The state of each particle in the sample-based
displays for the control systems they describe are mapped onto
the playback parameters for sound in a granular synthesis scheme.
Provided a sufficient density of particles, it is plausible that the
sonic texture that results evidences the underlying probability den-
sity that the particles sample, rather than the particular sample set,
in the same manner as described above, and, in any event, what
doesn’t survive might be perceived as an unbiased noise. In any
event, the situation discussed in the present contribution, in which
a mutually evolving state is displayed relative to a set of models,
is distinct.

4. ASSESSMENT

While we have not yet gathered results to assess the utility or us-
ability of the system described here, trial experiments are being
conducted to assess its viability, including a joint spatial and sonic
figure reproduction task, using a capable nonspecialized wireless
pointing device (the Nintendo Wii video game controller). We also
plan to assess the system on a similar task that asks users to learn to
handwrite new figures with sonic feedback. We intend to compare
with results on similar tasks from the literature on haptic virtual
environments, including force-feedback assisted writing [19].

5. CONCLUSIONS

We have presented a new architecture for the interactive sonifica-
tion of gestural affordances, based on a combination of modern
tools for gesture tracking, modeling, and new proposals for the
derivation of sonification parameters.

The subject of gesture input has been of considerable inter-
est in the human computer interaction research community for the
past two decades. Arguably, the most inspirational and convinc-
ing examples for such research have come from gestural control of
sound in the musical domain, comprising both mechano-acoustic
control and new computer music instruments. It is thus appropri-
ate that new approaches to this problem should return to the setting
of closed loop control with sonic feedback. Together these com-
prise a sufficiently rich body of examples from which we hope to
continue to profit as sources of inspiration.
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