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ABSTRACT

Super-resolution (SR) is a technique that generates a high-
resolution (HR) image from a set of low-resolution (LR) ones.
Previous preconditioning methods for SR did not consider
the case of rational magnification factors. In this paper, a
method for preconditioning SR problems involving such fac-
tors is presented. We show that by reordering the pixels of the
observed LR images, the structure of the linear problem to
solve is modified in such a way that preconditioners based on
circulant operators can be used. Simulations with magnifica-
tion factors of practical interest demonstrate the effectiveness
of our approach.

Index Terms— Super-resolution, preconditioning, image
restoration, linear systems

1. INTRODUCTION

HR images are desired and often required in several appli-
cations. Since increasing resolution by employing a better
camera can be costly and sometimes infeasible, SR [1][2] can
constitute a good alternative. This technique synthesizes a
HR image from a set of degraded and aliased LR ones by ex-
ploiting knowledge of the relative subpixel displacements of
each LR image with respect to a reference frame.

Many SR algorithms boil down to solving a large struc-
tured and sparse system of linear equations. Iterative solution
methods such as conjugate gradients (CG) [3] are often em-
ployed and can benefit from performance improvements due
to preconditioning, which transforms a system into another
having the same solution, but that can be solved either more
accurately or faster [4]. Recently, Nguyen et al [5] showed
how to accelerate least-square SR algorithms by reordering
the pixels of the HR image in the formulation of the prob-
lem. Assuming that the magnification factor is an integer,
the new coefficient matrix associated with the proposed re-
ordering can be well approximated by a block matrix whose
blocks are circulant matrices. Since a circulant matrix is uni-
tarily similar to a diagonal matrix through the Fast Fourier
Transform (FFT) [4], efficient preconditioners can be devel-
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oped using such approximations. Later, Bose et al [6] pre-
sented a related technique where the approximating matrix is
a block matrix whose blocks are block-circulant matrices with
circulant blocks (BCCB) instead of simple circulant matrices.
In their work, the authors implicitly assume that the magnifi-
cation factor is an integer.

In this paper, we show how to apply preconditioners based
on circulant matrices to SR problems involving a rational mag-
nification factor in order to accelerate the solution process.
More precisely, we describe a technique for reorganizing the
coefficient matrix given the parameters of the SR problem to
solve. This is motivated by recent work of Lin and Shum [7]
suggesting that, under certain circumstances, optimal magni-
fication factors for SR are non-integers.

2. MATHEMATICAL MODEL

The problem consists of recovering an Nx-by-Ny HR image
X from a set of k registered Mx-by-My LR images Yi, where
i = 0 . . . k−1. Suppose that q represents the desired magnifi-
cation factor in both the horizontal and vertical directions; we
then have Nx = qMx and Ny = qMy . Note that q does not
need to be an integer; one could have Nx = 150, Mx = 100
and q = 1.5 for instance. It is assumed that the LR images
were generated by shifting and blurring the HR image, then
decimating the result. The blur is assumed to be linear shift-
invariant (LSI). Let x be a vector of length NxNy whose ele-
ments are the pixel values ofX in a given lexicographic order.
Similarly, yi is a vector of length MxMy representing the LR
image Yi. The imaging process yielding an observed image
yi can thus be expressed in matrix form as

yi = DiBiSix + ni, (1)

where Di is an MxMy-by-NxNy decimation matrix, Bi is an
NxNy-by-NxNy blurring matrix, Si is an NxNy-by-NxNy

shift matrix and ni is an additive noise vector of length MxMy .
By stacking these equations on top of one another and using
Hi = DiBiSi to simplify notation, one gets: y0

...
yk−1

 =

 H0

...
Hk−1

x +

 n0

...
nk−1





y = Hx + n. (2)

The system (2) is generally ill-conditioned and cannot be solved
directly. By using linear least-squares regression with regu-
larization, we minimize the following cost function instead:

min
x

{
‖y −Hx‖22 + λ‖Rx‖22

}
, (3)

where R is a regularization operator such as the first-order
finite-difference operator. The minimization of expression (3)
above amounts to solving this system:(

HT H + λRT R
)
x = HT y. (4)

3. PRECONDITIONING APPROACH

We follow the preconditioning approach of Nguyen et al by
first finding approximations H̃ and R̃ to H and R respec-
tively. An approximation of the coefficient matrix of equation
(4) can then be formed as follows:

H̃T H̃ + λR̃T R̃. (5)

To simplify the explanation that will follow, we give a few
definitions. Let Fq,[i, j](X ) be a discrete linear operator that
downsamples an image X by a factor of q along both axes,
starting with pixel (i,j). For example, applying F2,[1, 0] to a
4-by-4 image X would give

X
′
=

[
X(1,0) X(3,0)

X(1,2) X(3,2)

]
,

where X(i,j) refers to pixel (i, j) of X . The equivalent matrix

operator is denoted by F(Lx,Ly)

q,[i, j] , which is compatible with a

vector representing an Lx-by-Ly image. Finally, let F(Lx,Ly)
q

be the square matrix obtained by stacking on top of one an-
other the downsampling matrices F(Lx,Ly)

q,[i, j] associated with all
possible combinations of horizontal and vertical integer shifts
smaller than q. Note that F(Lx,Ly)

q is a permutation matrix,
since F(Lx,Ly)

q x has the effect of reordering the elements of
x without modifying them.

3.1. Integer magnification factor q

Nguyen et al’s technique reorders the columns of H and the
pixels of x in a way that simulates several downsampling
operations. Using the previous definitions, their reordering
scheme can be defined by the permutation matrix P as

P = F(Nx, Ny)
q (6)

and the desired reordering is HPT . The reordered matrix is a
k-by-q2 block matrix with blocks of size MxMy-by-MxMy .
Consequently, the approximation (5) of the normal equations
will be a q2-by-q2 block matrix with blocks of size MxMy-
by-MxMy .

To illustrate their method, we consider the simple case
where Nx = Ny = 4, Mx = My = 2 and q = 2. Assuming
for simplicity that both B0 and S0 are the identity matrix, the
transformation matrix H0 associated with Y0 is:

H0 =
1
4


1100 1100 0000 0000
0011 0011 0000 0000
0000 0000 1100 1100
0000 0000 0011 0011

 . (7)

The permutation matrix is

P = F(4,4)
2 =


F(4,4)

2,[0, 0]

F(4,4)
2,[1, 0]

F(4,4)
2,[0, 1]

F(4,4)
2,[1, 1]

 , (8)

and the reordered matrix is

H0PT =
1
4


1000 1000 1000 1000
0100 0100 0100 0100
0010 0010 0010 0010
0001 0001 0001 0001

 . (9)

3.2. Rational magnification factor q = a
b

When q is not an integer, one cannot create a permutation ma-
trix P using the previous method such that HPT has a struc-
ture suitable for preconditioning. However, if q is a rational
number such that q = a

b , where a and b are integers, and both
Mx and My are chosen to be multiples of b, then one can find
two permutation matrices P and Q such that QHPT has the
desired structure; these permutation matrices are defined as

Q = F(Mx, My)
b and P = F(Nx, Ny)

a . (10)

The effect of matrix Q can be seen as reordering the rows
of H and the pixels of the LR images correspondingly. The
reordered matrix is a kb2-by-a2 block matrix with blocks of
size MxMy

b2 -by-MxMy

b2 . Consequently, the approximation (5)
of the normal equations will be an a2-by-a2 block matrix with
blocks of size MxMy

b2 -by-MxMy

b2 .
To illustrate our reordering method, we consider the case

where Nx = 6, Ny = 3, Mx = 4, My = 2 and q = 3
2 = 1.5.

Using the same simplifying assumptions as before about B0

and S0, we have that

H0 =
1
9



420000 210000 000000
024000 012000 000000
000420 000210 000000
000024 000012 000000
000000 210000 420000
000000 012000 024000
000000 000210 000420
000000 000012 000024


. (11)



The permutation matrices are

Q =


F(4, 2)

2,[0, 0]

F(4, 2)
2,[1, 0]

F(4, 2)
2,[0, 1]

F(4, 2)
2,[1, 1]

 and P =



F(6, 3)
3,[0, 0]

F(6, 3)
3,[1, 0]

F(6, 3)
3,[2, 0]

F(6, 3)
3,[0, 1]

F(6, 3)
3,[1, 1]

F(6, 3)
3,[2, 1]

F(6, 3)
3,[0, 2]

F(6, 3)
3,[1, 2]

F(6, 3)
3,[2, 2]



, (12)

and the reordered matrix is

QH0PT =
1
9



40 20 00 20 10 00 00 00 00
04 02 00 02 01 00 00 00 00
00 20 40 00 10 20 00 00 00
00 02 04 00 01 02 00 00 00
00 00 00 20 10 00 40 20 00
00 00 00 02 01 00 04 02 00
00 00 00 00 10 20 00 20 40
00 00 00 00 01 02 00 02 04


. (13)

We obtain a block matrix where similar values in each block
are aligned diagonally, which allows the utilization of pre-
conditioners based on block matrices with circulant blocks.
These circulant blocks are derived from preconditioners ex-
ploiting properties of circulant matrices such as Strang’s pre-
conditioner [8] or Hanke-Nagy’s inverse preconditioner [9];
see Nguyen et al’s work [5] for more details.

3.3. Computational complexity

The two tasks that are the more computationally intensive are
the block-diagonalization of the approximation of the coeffi-
cient matrix and its inversion. Using the FFT, the block ap-
proximation of the normal equations is transformed into an
a2-by-a2 block matrix with diagonal block matrices of size
MxMy

b2 -by-MxMy

b2 . This step takes O
(
a4 MxMy

b2 log(MxMy

b2 )
)

.
Due to its special structure, the inversion of this matrix can be
performed by solving MxMy

b2 independent systems of linear
equations, each of size a2. The complexity of this task is thus
O

(
a6 MxMy

b2

)
. It is interesting to note that when a becomes

large, the problem becomes more computationally intensive
to solve, even if the actual magnification factor is low. For
this reason, one must be careful when choosing the rational
magnification factor.

4. RESULTS

If the noise removal and registration steps are not sufficiently
reliable, a magnification factor of 1.6 is the practical limit of

(a) (b)

(c) (d)

(e)

Fig. 1. SR with a magnification factor of 2.5: (a) the original
image; (b) one of the 9 LR images (scaled); (c) the restored
image after one CG iteration; (d) the restored image after one
PCG iteration; (e) Relative SSE as a function of the number
of iterations.

SR [7], and a magnification factor of 2.5 is suggested when
a larger value is desired. We present simulation results for
these two cases of practical interest in Figures (1) and (2).
For this purpose, we generated a set of LR images by shift-
ing, blurring and downsampling an ideal 240-by-240 HR im-
age according to the imaging model described in Section 2.
In the first experiment, we downsampled the HR image by a
factor of q = 5

2 = 2.5 to produce a set of nine LR images.
In the second experiment, we produced a set of four noisy
LR images by downsampling the ideal HR image by a fac-
tor of q = 8

5 = 1.6 and adding Gaussian noise to the result.
The CG and preconditioned conjugate gradient (PCG) meth-
ods were then used to reconstruct the HR image from the LR
ones. Strang’s preconditioner was used in the PCG case. The



(a) (b)

(c) (d)

(e)

Fig. 2. SR with a magnification factor of 1.6: (a) the original
image; (b) one of the 4 LR images (scaled); (c) the restored
image after one CG iteration; (d) the restored image after one
PCG iteration; (e) Relative SSE as a function of the number
of iterations.

Laplacian was employed as a regularization term in both ex-
periments and the value of λ was set to 0.001 and 0.005 in
the first and second experiments respectively. The results of
these experiments, shown in Figures 1 and 2, allow a com-
parison of the restored image after one iteration of either CG
(c) or PCG (d), as well as the relative Sum-of-Squared Errors
(SSE) between the ideal HR image (a) and the reconstructed
HR image as a function of the number of iterations (e). One
can see that the PCG method produces a better solution for
the same amount of iterations. The actual computation time
depends on the hardware used, the image size and the rational
magnification factor, as discussed in section 3.3.

5. CONCLUSIONS

In this paper, we presented a technique for preconditioning
SR problems involving a rational magnification factor. An
interesting application of this work is the preconditioning of
problems that employ the non-integer magnification factors
advocated by Lin and Shum [7]. We also note that the pro-
posed approach could easily be adapted to temporal super-
resolution preconditioning [10] when a non-integer frame-
rate improvement factor is desired.
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