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Abstract— Marine scientists are turning increasingly to under-
water video cameras in their research. These provide enormous
quantities of visual data that often overwhelm the manual
processing abilities of the scientists. To cope with such large
data sets, an automated change detection system is proposed
that helps isolate the time periods in which significant activity is
found in the video sequence. Unlike change detection algorithms
in use in terrestrial environments, the system must account
for the photometric complexity of underwater video, including
interference from small floating particles (“sea snow”), the scatter
of light as it propagates through water, and the non-uniform
frequency decay of light intensity with distance. In addition,
certain activity, such as the motion of swimming fish that
are attracted by the use of artificial lighthing, is considered a
distracter, and should, ideally, be ignored. These factors are
addressed by our system, in large part through the use of
Mixture-of-Gaussians background models.

I. INTRODUCTION

Scientific observation of the undersea environment is a
challenging problem, in particular at extreme depths where
high pressure and the absence of light impose significant
requirements on video equipment. While various deep sea
dives conducted by robotic vehicles offer a limited glimpse
into this incredible environment, there has been little oppor-
tunity for extended observation of particular areas of interest
over a duration of weeks or months. With the deployment of
the Victoria Experimental Network Under the Sea (VENUS)
and the North-East Pacific Time-Series Undersea Networked
Experiments (NEPTUNE) observatories now taking place, this
situation is about to change dramatically.

From a scientific perspective, one of the most important
aspects of observation is the ability to track both short-term
phenomenon such as the feeding habits of a crab and long-term
changes of undersea objects, such as gradual plant growth on
the seabed or decomposition of a dead organism. However, it
is infeasible for a limited number of marine scientists to view
a continuous, live video feed from an undersea camera for
more than relatively brief periods of time, outside of which,
the events of interest may take place. This motivates the use
of automated computer analysis of the video in order to detect
key changes of relevance to the scientists.

Such processing is complicated by the photometric charac-
teristics of the undersea environment [1], such as scatter of
light and interference from small floating particles (“marine
snow”), which absorbs or reflects light. As distance between

the camera and observed objects increases, both contrast and
clarity decrease significantly. These problems persist, regard-
less of the quality or resolution of the cameras employed.

Moreover, the use of artificial lighting, necessitated by the
absence of natural light at significant depths, attracts fish to the
observation area. These fish not only occlude other objects of
interest, which we refer to as significant objects, but also create
semantic ambiguity for change detection, as their motion is
considered irrelevant for most scientific purposes. We thus
denote such fish as distracters. More formally, given a selected
time scale, significant objects may generally be in motion, but
must remain static for certain periods, during which they can
be observed as part of the background. Distracters, on the
other hand, are seen to be in (nearly) constant motion. For
most purposes, marine scientists would like to ignore these.

Additional factors also manifest underwater, such as non-
uniform frequency attenuation that results in a “green-shift”
of the resulting video. While this reduces the apparent colour
range of the scene, it is not, however, an issue for change
detection algorithms.

This paper introduces a novel change detection system
that is tailored to the demands of this challenging undersea
environment. First, Section II summarizes related work in
change detection. Next, Section III introduces the supporting
method of Mixture-of-Gaussians (MoG) models, which offers
robustness to the complicating factors of noise and semantic
ambiguity, noted above. Sections IV describes the details of
our implementation and illustrate some of the experimental
results. Finally, Section V discusses opportunities for further
enhancements and applications.

II. RELATED WORK

Early change detection system relied on the signed dif-
ference image [3][2]. After thresholding such a difference
image, one obtains a change mask, as illustrated in Figure 1,
indicating the regions that differ between one image and
the next. Of course, this method cannot distinguish between
significant objects, for example, the small movements of the
crab, contained within the manually generated bounding box,
and the remaining regions, which all correspond to distracters.

More sophisticated algorithms exploit spatial and temporal
relationships between neighbouring pixels as predictions and
use these to classify pixels as changed or not. Toyama et al. [5]



Fig. 1. Example of change mask generation. Sample frame from time t (left), sample frame from time t + 50 (middle), and change mask after thresholding
the intensity difference between the two frames (right). Note that in this example, the significant objects are contained exclusively in the rectangular bounding
box.

uses the linear combination of k previous values to predict the
current value of a pixel, while Hsu et al. use spatial intensity
prediction for change detection of surveillance images [4].
While more robust to noise than simple differencing, predic-
tion methods are also incapable of separating significant and
distracter objects, as these may have similar color, texture, or
even short-term motion characteristics.

In recent years, statistical background modelling techniques
were applied to change detection [6]. Stauffer and Grimson [7]
model each pixel by a mixture of Gaussians and use an on-line
approximation to update the model. Because significant objects
are occasionally static, the background model will collect more
samples corresponding to these than to distracters. This is
a critical factor, is it provides a metric for distinguishing
between the two. Furthermore, by updating multiple Gaussians
in a gradual manner, their model is adaptive to nonstationary
temporal information, such as background changes due to
varying illumination or other photometric noise. Lee [8] fur-
ther proposed an adaptive, rather than fixed, learning rate for
each Gaussian to obtain improved convergence speed without
sacrificing stability.

Relatively few change detection systems were designed
explicitly for the underwater environment. Two prominent ex-
amples are those of Edington et.al. [13], and Lebart et.al. [14].
Edington et.al. first identify candidate object regions by ana-
lyzing the salient feature maps. After manually distinguishing
interesting objects from noise objects (distracters), they track
the former frame-by-frame to detect changes in the scene.
Similarly, Lebart et.al. also begin with feature analysis, clas-
sify these into groups. A change is noted when the distance
between similar feature groups in different frames exceeds
a threshold. In both algorithms, the critical factor is the
feature set. Unfortunately, these must be developed on a
case-by-case basis to cope with the photometric complexities
arising from variations in illumination, undersea location,
and marine snow conditions. Further more, these algorithms
require manual tuning in order to differentiate between the
change of significant objects and distracters; neither can do
so automatically. This observation motivated our adoption of

statistical background modelling techniques, specifically, the
MoG background model using adaptive learning rates, in order
to support an automatic change detection algorithm.

III. CHANGE DETECTION OF SIGNIFICANT OBJECTS

The operation of our change detection algorithm is shown
in Figure 2. Given a set of images of the same scene, these
are grouped into distinct time intervals. The images from
each such interval are used to generate an MoG background
model, from which we construct a background image, visually
representing the static background. Finally, for each successive
time interval, a change mask of significant objects is produced
by comparing the background image with the MoG from a
different time interval. This process is explained in further
detail in the following sections.

A. Mixture-of-Gaussian model construction

Suppose all the pixels from the frames in a given time
interval satisfy the distribution of our Mixture-of-Gaussian
(MoG) background model. In this case, the probability that
a pixel assumes a value Xt at time t is given by:

P (Xt) =
K∑

i=1

ωi,t√
(2π)n|Σi,t|

1
2

×

exp{−1
2
(Xt − µi,t)T Σ−1

i,t (Xt − µi,t)}

(1)

where at time t, µi,t is the mean of the ith Gaussian, Σi,t

is the diagonal covariance matrix, and ωi,t is its weight [7].
For our purposes, pixel values are represented in the Y CbCr

colour space, as this was found to offer greater robustness to
photometric noise than either RGB or HSI. This result was
also observed by Kristensen [9].

Any new pixel value is compared against the available
models. If the value can be represented by an element of the
MoG, it is used to update the model. Otherwise, the least-likely
Gaussian element, i.e. with the smallest ωi,t, will be replaced
by a new Gaussian initialized with the new pixel value. Our
present implementation uses K = 3 Gaussians.



Fig. 2. Illustration of change detection algorithm.

After all the frames within a particular time interval have
been processed as above, we begin the generation of the next
MoG background model.

B. Background image generation

Next, a weighted summation of the means of each Gaussian
element from the MoG generates a visual representation of
the background model. This background image describes the
static background during the given time interval, as shown in
Figure 3.

A background image, i.e. the expected value, E[X|B], of
the observation X , assuming it to be background, is given by
Lee [8] as the following weighted average:

E[X|B] =
K∑

i=1

E[X|Gi]P (Gi|B)

=
∑K

i=1 µiP (B|Gi)P (Gi)∑K
j=1 P (B|Gj)P (Gj)

(2)

Only the background and static significant objects are
retained in the background image while distracter objects are
effectively removed. Thus, subsequent comparisons between
a background image and a model will not be biased by the
semantic noise due to distracters. As is explained in the
following section, these factors are critical to our change
detection of significant objects.

C. Change detection

Change detection is closely related to the problem of
foreground/background segmentation. For a given frame, we
calculate the probability of each pixel belonging to the back-
ground according to the trained MoG background model:

P (B|X) =
K∑

i=1

P (B|Gi)P (Gi|X)

=
∑K

i=1 P (X|Gi)P (Gi)P (B|Gi)∑K
i=1 P (X|Gi)P (Gi)

(3)

If this probability exceeds some threshold, the pixel is
considered as an element of the background, and otherwise,
as a foreground (or non-static) object.

IV. EXPERIMENTAL RESULTS

The video data used in our experiments was taken from
samples of the VENUS project database.1 In this data set,
we assume that the crab (at left) and the fish (middle) of
Figure 2 are significant objects, while other moving objects
are distracters that should be ignored.

A. Significant Object Change Detection

When detecting regions of significant object change, as
described in Section III, thresholding2 the probabilities of
Equation 3 results in a single, raw change mask for the entire
time interval ([0, T ] in the example of Figure 4). In this
application, the values of X are taken from a background
image and compared to the MoG model (the Gi, i = [1, k]
elements) from a different time interval ([T, 2T ] in Figure 4).

We apply binary image morphological operations to remove
noise and then use the connected components algorithm [12] to
separate the raw change mask into non-overlapping regions.
These delineate the areas of the image in which significant

1http://www.venus.uvic.ca/data/galleries/video/
saanich inlet/index.html

2In our current implementation, we are using a threshold value of 0.11.



Fig. 3. Given a group of images over the interval t = [0, 5] (left), we train the MoG background model, from which we generate a background image (right)
that includes only the sea floor and stable significant objects seen within that interval.

object change has occurred between different time intervals,
as shown in the example of Figure 5.

These results clearly reveal whether and where the changes
of significant objects have occurred within the period covered
by the associated time intervals ([0, 2T ] in Figure 4). However,
we may achieve greater temporal accuracy by making use
of representative frames,3 selected from each interval as the
frame that maximizes P (B|X). In this case, the time at which
the change occurred can be isolated to the smaller window of
[tx1 , tx2 ].

It is difficult to quantify the accuracy of our algorithm, given
that the only reasonable test video sequence available to us
was extremely short and limited in variability. However, as
one metric of performance, on the test sequence used for this
initial study, we find that the system consistently distinguishes
between the constantly moving fish (distracter) and both the
periodically moving fish and crab (significant objects)). False
positives only resulted from unpredictable background motion,
as seen in the cloud of dust produced by a fish sweeping its tail
along the sea floor. Another possible source of error is that the
change detection algorithm may produce false negatives when
significant objects exhibit similar colour to the background,
just as camouflaged objects are difficult for humans to detect.

B. Distracter Object Removal

Once the regions of significant objects have been identified,
we can, if desired, attempt to remove distracters from the video
sequence, allowing scientists to focus their attention solely on
the objects of interest.

This is accomplished by first comparing each frame in
a given interval to the background model generated from
that same time interval. Because the background image, by
definition, is free of distracters, we cannot use it to detect
such objects. Therefore, we use instead the observations X
from individual frames in Equation 3. Thresholding P (B|X),
we obtain a raw change mask of this frame. Note that this

3This frame is generally similar to the background image, but may exhibit
photometric noise and contain distracters.

result may contain both distracters and significant objects, as
seen in Figure 6. The next step is to label these appropriately.

Referring to Figure 5, we note that significant objects appear
only in some of the change masks, corresponding to the time
intervals in which the objects were in motion. In order to
separate these from distracters, we combine several successive
significant object change masks in a logical OR manner to
obtain a more inclusive aggregate representation, as seen in
Figure 7.

Each isolated region of the aggregate change mask is
enclosed by a bounding box. We then choose from a group
of images one reference frame that satisfies the following two
requirements:

• the sum of probabilities P (B|X) within each bounding
box exceeds some threshold, thus maximizing the likeli-
hood that they do not contain distracter objects

• the number of local features contained within the bound-
ing boxes, which correspond either to significant objects
or background, as described below, is maximal, thereby
increasing the chance of finding matching features in
other frames

Pixel values within a circular neighbourhood are represented
by a combination of SIFT features [10] and a 32-bin colour
histogram. A local-feature based object recognizer [11] is
then used to find matches between the reference frame and
other frames. Any change regions that do not contain at least
one matching feature from the reference frame are assumed
to belong to distracter objects and can be replaced with the
corresponding pixels from the background image, as illustrated
in Figure 8. Repeating this process with every frame in a
video sequence results in the effective disappearance of the
distracters.

This approach is entirely dependent on the quality of the
local features it is able to recover, and thus, suffers at times
from the complicated photometric properties of the undersea
environment. Additionally, motion blur degrades the quality
of feature matching, resulting in the occasional unintended
removal of significant objects. However, our distracter removal



Fig. 4. In each time interval, [0, T ] and [T, 2T ], a background model, MoGi, and background image Bi, are generated. A representative frame, Xi,
maximizing P (B|X) is then selected from each interval.

Fig. 5. In this example, each background image, Bi is compared to a successive background model, MoGi+1. Thresholding the values of P (B|X), we
generate change masks of significant objects for each time interval.

Fig. 6. A sample video frame (left) and the corresponding change mask (right). For the purposes of illustration, regions corresponding to significant objects
(the lower fish) are shaded in a lighter color than the distracter.

method is notable for its low computational cost and avoidance
of any manual segmentation operations.

V. CONCLUSIONS AND FUTURE WORK

We introduced a novel change detection system for the
challenges of scientific undersea observation. The system
overcomes many of the problems resulting from the photo-
metric complexities and semantic ambiguity associated with



Fig. 7. For each region in the change mask (left), local features, marked as ‘+’ symbols, are determined on the reference frame (middle). These features are
then matched against other frames (right).

Fig. 8. A sample frame before (left) and after (right) removal of the distracter.

this environment. Under the conditions of colour dissimilarity
between foreground and background and no occlusion between
significant objects and distracters, the system performs very
well on the test sequences we have used. Although our test
data does not violate these conditions, we plan to combine
temporal motion flow and spatial texture consistency with this
algorithm to improve its robustness.

Additional future possibilities include the investigation of
pre-processing or de-noising operations to improve image
quality, as well as distance-sensitive frequency correction to
account for the green-shift described in Section I. Perhaps
more importantly, robust object tracking may be employed
to improve the accuracy of region identification or to support
higher-level operations. While it remains to be seen how well
the initial results scale to the wide range of conditions we
might encounter from live VENUS or NEPTUNE video data,
we look forward to future experiments as the observatories
become available.
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