AudioScape: A Pure Data library for management of
virtual environments and spatial audio

Mike Wozniewski
La Société Des Arts
Technologiques
1195 Saint-Laurent boulevard
Montreal, Quebec
mike@mikewoz.com

ABSTRACT

We present a Pure Data library for managing 3-D sound and
accomplishing signal processing using spatial relations. The
framework is intended to support applications in the areas of
immersive audio, virtual/augmented reality systems, audio-
visual performance, multimodal sound installations, acous-
tic simulation, 3-D audio mixing, and many more.

Keywords
PD Library, Spatial Audio, 3-D graphics

1. INTRODUCTION

Pure Data (Pd) is a well-suited environment for the cre-
ation and control of various forms of media. As a result,
many interesting projects have been realized, and a variety
of novel tools are becoming available for artists and multi-
media developers. The programming environment is how-
ever highly geared towards the control of audio processing,
leaving interaction with visual content as added functional-
ity that must be installed afterwards. Many libraries have
been made available over the past few years to deal with
image and video processing (e.g. GridFlow, PDP/PiDiP,
Framestein, PixelTango), yet the management of 3-D con-
tent is still poorly supported.

The GEM library [3] is one available tool for generic con-
trol of 3-D objects. It allows users to create OpenGL scenes
from within PD, however the interaction tends to be very
low-level. Users need to ideally have some knowledge of 3-D
graphics programming, since control of the scene is typically
accomplished by loading primitives, manipulating vertices,
and manually applying transformations to achieve a certain
effect. This is not necessarily a problem for artists who wish
to use PD for intricate 3-D modelling. It does however be-
come quite tedious for those who wish to create game-like
worlds, realistic virtual environments, or high-quality 3-D
simulators. Furthermore, the GEM library has no built-in
modelling of audio in 3-D space. As a result, spatial audio

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Pd Convention 2007. Montréal, Québec, Canada.

Copyright 2007. Copyright remains with the author(s).

Zack Settel
La Société Des Arts
Technologiques
1195 Saint-Laurent boulevard
Montreal, Quebec
zack@sat.qc.ca

Jeremy R. Cooperstock
McGill University
Centre for Intelligent Machines
3480 University Street
. Montreal, Quebec
jer@cim.mcgill.ca

effects have to be computed independently from the visual
3-D display, which adds more memory and computation de-
mands on the computer.

With our approach, we assume that other applications
will be used for 3-D modelling (e.g. 3D Studio Max, Maya,
Blender), and focus instead on the spatial arrangement of
those models within the scene. Instead of providing users
with control over individual vertices and transforms, a higher-
level type of interaction is supported. Users can load models
such as human avatars, buildings, concert halls, or any other
type of 3-D object. Control of these models involves simple
translation /rotation/scaling in space, but can also control
keyframe animations exported with the model.

ﬁ FLANGER

SOUNDLOOP
DELAY

o
o A

|

=

Figure 1: Immersion in a 3-D audio scene, where a
user is surrounded by effects and sound sources.

The most important contribution of our library however,
is the physical modelling of sound within the virtual scene.
Users can place virtual microphones at arbitrary 3-D lo-
cations, and captured sound is processed according to the
laws of physics. This includes simulated diffraction around
objects, decay with distance, frequency-dependent damping
due to absorption, and reverberation. Moreover, users can
place digital signal processing (DSP) at localized positions
in 3-D space, allowing for the modification of audio as it
travels through space. This kind of flexibility allows for
the creation of three-dimensional instruments where users
can steer signals in 3-D space to control the musical out-
put. This spatial audio processing along with the graphical
rendering is processed and controlled in realtime.

2. VIRTUAL 3-D AUDIO SCENES

In our framework [7, 8], a virtual audio scene is defined
by a number of soundNodes, soundSpaces, and soundCon-
nections. The soundNodes are the basic building block of a
scene, and contain parameters that model the spatial char-

id A unique ID for the node
parent The ID of this node’s parent
dsp A DSP plugin that computes audio
maps]] List of mapping plugins that define control
gfx Filename of a 3-D graphical model
pos = (x,y,2) 3-D position (in the local coordinate system)
scale = (x,y,z) | The scale of the object in three dimensions
radn = (0, ¢, 1) | 3-D vector representing direction of radia-
tion (sound source orientation)
sens = (6, $,1) | 3-D vector representing direction of sensitiv-
ity (sound sink orientation)
radnRolloff A function or look-up table returning radia-
tion values for various angles of incidence
sensRolloff A function or look-up table returning sensi-
tivity values for various angles of incidence
radnFactor A distortion factor that affects the sampling
of the radnRolloff
sensFactor A distortion factor that affects the sampling
of the sensRolloff

Table 1: List of important soundNode parameters.

acteristics of an audiovisual element, as well as logical pa-
rameters relating to control and DSP (listed in Table 1).

2.1 Steerable Sound

It is important to note that every soundNode has two in-
dependent steering vectors: one that describes the direction
of radiation (radn), and one that describes the direction of
sensitivity (sens). A soundNode can thus behave as both
a sound ‘source’ that emits sound into the scene, and as a
sound ‘sink’ that captures audio at a particular 3-D loca-
tion. This is an important distinction from other 3-D audio
engines, since it allows nodes to be used as signal processing
units that perform a modification to sound at a specific 3-D
location.

Sound effects nodes such as the harmonizers, flangers, or
any other type of DSP can thus be created. However, in-
stead of using patch cables or wires to connect different DSP
units, our framework uses 3-D space as the medium for sig-
nal flow. There are no knobs or sliders to control levels.
Rather, the audio that travels between soundNodes is pro-
cessed (attenuated, delayed and filtered) according to the
laws of physics. Manipulating the relative distance and ori-
entation of soundNodes becomes the method of controlling
audio processing. Thus, the principal operators for mixing
(e.g. bussing, panning, filtering) become spatial in nature
(e.g. translation, rotation, scaling).

\ 5
3 A
Figure 2: A scene modelled with AudioScape.

x—x .B

As an example, Figure 2 shows how a user wearing a head-
set can be modelled with soundNodes. The audio captured
from the user’s microphone is represented by a soundNode
labelled A, which radiates the signal into the scene based on
the user’s head orientation and a rolloff function. Typically,

a person’s voice travels in all directions as a spherical wave-
front. With our framework, users have the ability to choose
the directivity of their sound signals by defining rolloff func-
tions.

Figure 3 shows an example of a soundNode and its radi-
ation. The sound signal will radiate with full gain (value
of 1.0) along the direction specified by the radn vector, and
fall off according to the radnRolloff function. Hence, we can
think of a ‘rolloff’ as some function or procedure that pro-
vides gain values given an angle of incidence to the steering
vector.

093

- fnas
=0.82'¢

Figure 3: Directivity of a soundNode is shown. The
sound radiates along the radn vector, and falls off
according to a cardioid-shaped rolloff function.

In this case the rolloff function has a cardioid shape, but
any type rolloff function can be defined by the user or speci-
fied by a look-up table if a desired effect cannot be described
algebraically. For best results however, the function should
evaluate to 1.0 if the angle of incidence is 0 radians, and
should be a valid monotonically decreasing function to the
range of m radians. The reason for these requirements is that
there is also an additional control parameter called radnFac-
tor (or sensFactor in the case of a sink node). This param-
eter allows for the distortion of a rolloff function, essentially
by stretching or squishing it.

2.2 Physically Modelled Audio Propagation

Moving our attention back to the example in Figure 2, we
notice three other soundNodes. The node labelled B is a
sound processing unit with omni-directional sensitivity and
radiation. It will capture sound from the user’s microphone,
apply some modification, and emit the result back into the
scene. Nodes C and D represent the two loudspeakers of
the user’s headphones, and will capture the resulting audio
signal for playback in the headset. It should however be
noted that the captured sound is first processed to simulate
the effects of travelling through 3-D space. This is managed
using the soundConnection mechanism.

Rather than forcing an identical propagation model for ev-
ery node, we construct a directed soundConnection between
every source-sink pair in the scene. This soundConnection
is in fact a data structure, containing various parameters
that describe how sound travels between the nodes, allow-
ing a user to specify whether the sound should be delayed,
whether it should decay with distance, and whether it should
be filtered to simulate diffraction and absorption. Further-
more, soundConnections need not exist for every possible
pairing in the scene. They are only created as needed,
to specify exactly which soundNodes can feed others with

sound. If a soundConnection does not exist between two
nodes, then the physical modelling of sound propagation
between those nodes is not computed, and precious CPU
cycles are saved.

In the example that we have been studying, there are ex-
actly three soundConnections present: (A — B), (B — C),
and (B — D). There is no connection from (B — A), since
that would cause a feedback loop. Likewise, there is no con-
nection from (A — C) or (A — D), because the user wants
to hear only the processed voice in this case, and not the
direct (raw) signal. If desired, the user could create such
connections and mix in some of the raw signal. Such an
effect would be similar to how we hear ourselves in nature.
We thus start to see the power of the connection mechanism,
since it allows the user to specify exactly how audio travels
within the environment.

It is important to note that our audio porpagation model
can deliberately violate the rules of physics. The fact that
audio can be tightly focused and travel only along a narrow
pathway is obviously unnatural. Furthermore, for the pur-
pose of musical creation and performance, users might not
desire realistic models of sound propagation. Rather, they
may wish to exaggerate or diminish certain acoustic proper-
ties for artistic purposes. For example, Doppler shift is often
emphasized in sound tracks for cinema because it adds dra-
matic effect. Also, to conserve timing and intonation in mu-
sical pieces, it may be desirable to eliminate distance-based
delay of sound. Allowing for such rule-bending is a useful
feature of our system.

2.3 Volumetric Sound Processing

In nature, the size, shape, and the types of objects within
an environment will affect the propagation of sound. Our
brains are remarkably adept at uncovering this hidden in-
formation and inferring properties about our surroundings.
Users expect these acoustic cues when they travel through
virtual spaces, hence we provide a mechanism for defining
enclosed areas within a scene. These soundSpaces are simi-
lar to soundNodes, yet rather than capturing and emitting
audio at a fixed point in space, they operate on a volume
defined by an arbitrarily shaped 3-D model (defined in 3D
Studio Max, Maya, Blender, etc.). Signals from within the
volume will be captured with unity gain, while signals from
outside the volume will be captured and attenuated accord-
ing to the emitter’s distance from the boundary and the
absorption coefficient of the volume’s surface.

The reverberation model for soundSpaces allows for the
specification of delay times (for direct sound, and 1** & ond
order reflections), a reverberation time, and a filter to sim-
ulate frequency-dependent damping over time. However, if
the user wishes, this model can be replaced with any type of
DSP plugin such as a flanger or harmonizer. Thus, rather
than walking into an enclosed space and hearing the reverba-
ration of your voice or instrument, you would hear a flanged
or harmonized version of your sound signal instead. This
offers many interesting possibilities for artistic creation.

3. ARCHITECTURAL DECISIONS

In the case of real-time applications for 3-D gaming and
virtual reality systems, several toolkits and APIs are avail-

able, including Microsoft DirectX, OpenAL, X3D, and MPEG-

4. These toolkits allow developers to move sound sources
around a virtual scene and have them properly rendered.

Unfortunately, these toolkits are not sophisticated enough
for highly interactive sound applications, particularly for
those geared towards artists and musicians. They offer only
simple mechanisms to integrate spatial audio into applica-
tions, and often have an impoverished audio representation.

For instance, most APIs have no method to specify the di-
rectivity of sounds and instead consider all sources as omni-
directional. In the cases where directional sounds are sup-
ported, these are typically implemented with linear attenu-
ation applied as a function of angle (e.g. X3D [1]). There is
no support for complex radiation patterns that are emitted
by traditional musical instruments, or the cardioids that are
commonly found in audio equipment. Furthermore, most
APIs only support a single listener located at one position in
space, and lack the possibility to perform ‘unnatural’ sound
propagation. In general, it is difficult to manage more com-
plex sonic interactions between objects that may be impor-
tant to artists. For example, it might be interesting to copy
signals to different areas of the scene, attach two sets of
headphones to a soundcard for two different users, or boost
the Doppler Effect for dramatic purposes.

One noteworthy standard for describing interactive au-
dio scenes is AudioBIFS from MPEG-4 (ISO 14496-1) [6].
The representation of 3-D audio is quite interesting and
serves as inspiration for the work presented here. AudioB-
IFS borrows the scene-graph hierarchy from VRML to or-
ganize nodes, but introduces specialized audio processing
nodes such as ‘Sound’; ‘AudioSource’, ‘AudioFX’, and ‘Lis-
teningPoint’. These can be attached to graphical objects
anywhere within the scene, allowing developers to create
scenes for interactive mixing and musical control within a
3-D context.

Our work uses an similarly uses a scene graph organiza-
tion using the open-source library called OpenSceneGraph
(OSG) [2] to manage the arrangement of objects in space
and efficiently control the geometric transformations per-
formed on them. The main difference between our system
and AudioBIFS, is that we provide the ability for dynamic
control and reconfiguration of the entire scene in real-time
using Pure Data. BIFS on the other hand are binary in
format and cannot change dynamically. The scene must be
authored in advance and then compiled for distribution. In-
teractivity is accomplished by allowing certain fields to be
erposed and updated by a content server. The developer
must pre-define all possible interactions during the author-
ing phase. In our system, there is no differentiation between
an authoring mode or interactive mode; they are one and
the same.

3.1 OpenSceneGraph

OpenSceneGraph (OSG) is a graphics toolkit that pro-
vides a high-level interface to OpenGL. Rather than writing
and optimizing low-level graphics calls, OSG allows a devel-
oper to concentrate more on the organization and interaction
of 3-D content. We aim for typical scenes to be composed
of several independent 3-D models such as people, musical
instruments, audio equipment, and architectural elements
such as furniture, walls, and floors. The spatial interactions
between these elements will likely be high-level, involving
simple behaviours like translation, rotation, and scaling. We
anticipate that the need to control these models at the ver-
tex level will be rare, although the ability to animate various
components of these models will be required - for example,

articulating the body parts of a human avatar. With these
constraints in mind, we have adopted OSG, mainly because
of the scene graph data structure, which provides a hierar-
chical organization for virtual scenes.

A scene graph is simply a tree-shaped data structure that
organizes the logical and spatial elements of a 3-D scene.
Each element is represented as a node in a tree, including
things like models, transformations, lights, textures, and
cameras. The interesting thing about this organization is
that it provides an efficient method to propagate informa-
tion to groups of objects. Particularly, any spatial transfor-
mations performed on a parent node will be automatically
propagate to all child nodes. If we again consider the ex-
ample in Figure 2, we note that the user’s headset is a rigid
structure, with nodes A, C, and D sharing a common geo-
metric reference. If the user’s head moves or rotates, then
all three of these nodes should move and rotate together.
We thus set the ‘parent’ for the user’s ears (C' and D) to
be node A and then whenever that node is updated, the
change will automatically propagated down. Figure 4 shows
the resulting scene graph. It also shows that node B is not
affected since it has no geometric relation to the user’s head.

Figure 4: The scene graph associated with Figure 2.

4. THE ‘AUDIOSCAPE’ LIBRARY

In order to use OpenSceneGraph within the Pure Data
environment, we use the API provided with Pd to create
custom externals that encapsulate OSG classes and utility
functions. The library is written in C++, however the Pd
API is written in C, so we use the extern “C” declaration to
allow the use of a C++ compiler. This still allows Pd to in-
stantiate our objects, yet gives us the ability to incorporate
code from OSG. The end functionality is a set of patch-
able objects containing references to OSG classes that can
be placed on canvases and updated using the Pd messag-
ing system. For example, the [soundNode] object’ extends
the osg::Referenced class so that OSG can maintain ref-
erence counting and automatic garbage collection. It also
contains pointers to instances of other classes (osg: :Node,
osg: :Group, osg: :PositionAttitudeTransform, etc.) that
are used to manage the scene graph and the associated pa-
rameters and methods. Three other core objects exist as
part of the library: [AudioScape], [soundSpace], and [sound-
Connection].

The [AudioScape| object is the overall manager of the
virtual scene and allows for the creation (and destruction)
of other library objects. Table 2 lists the various methods
that are available.

It should be noted that AudioScape’s createNode, createS-
pace, and connect methods are simply helper functions. A
user can also just place a patchable [soundNode] object on a
Pd canvas, and it will become properly registered with the

!Square brackets indicate an patchable Pd object.

createNode [nodeID]| Creates a soundNode with the

given nodelD

createSpace [nodelD] Creates a soundSpace with the

given nodelD

destroy [nodelD] Destroys the soundNode with the

given nodelD

connect [srcID] [snkID] Create a soundConnection be-

tween the srcID and snkID

disconnect [srcID] [snkID] | Destroy the soundConnection be-

tween the srcID and snkID

saveXML [filename Save current scene to an .xml file

load XML [filename Load a scene from an .xml file

clear Clears the current scene

Table 2: Messages recognized by [AudioScape].

AudioScape engine. The helper methods are however con-
venient since with one command, they create all the appro-
priate Pd objects and connect them as necessary.? In fact,
there is also an very useful abstraction called [node-wrapper]
which can (and should) be used instead of directly placing
instances of the objects on canvases. The [node-wrapper]
contains various subpatchers with a variety of helper algo-
rithms. These include the necessary [send] and [receive] ob-
jects to pass messages to the nodes, as well as mechanisms
for dynamic creation and deletion of DSP and mapping plu-
gins (which we will discuss below).

4.1 Example Using Pd Patches

Given the framework described so far and the simple ex-
ample seen earlier in Figure 2, we will now look at how
one can build this scene using Pd patches. Various mes-
sage boxes need to be defined and the appropriate object
boxes need to be instantiated. Figure 5 shows a screenshot
of such a patch. First, the [AudioScape] object must appear
somewhere, thereby instantiating the library and making all
objects accessible. The construction of the scene begins by
sending messages to [AudioScape] that create each of the
four soundNodes (source-node, right-ear, left-ear, and FX-
node). In doing so, the library will dynamically create the
appropriate [node-wrappers| on the ‘AudioScape-workspace’
canvas. Conveniently, the [node-wrapper| sets up the ap-
propriate objects to receive messages for each soundNode.
These receivers have a standard naming convention with “-
IN” appended to the node’s id. Thus, to update parame-
ters of the source-node, one can simply send a message to
“source-node-IN”.

After the soundNodes have been created, parameters are
set so the nodes behave like the scene in Figure 2. Note
for instance that the right-ear and left-ear soundNodes have
been added as children to the source-node. This means that
the ear positions and orientations will be described in a local
coordinate system relative to the source-node. The left-ear
position of (—0.5,0,0.4) is not an absolute position, but is
rather the offset from the position of the source-node, locat-
ing the ear 0.4 units above the source-node and 0.5 units to
the left. Each ear also has cardioid sensitivity pointing 90°
away from the direction in which the source is radiating its
sound.

>This is accomplished using internal messages to Pd [4],
which allow for dynamic creation and connection of Pd
patches without using the mouse and keyboard.

STEP 1:
{create all somdNodes)

] simple_example patch newerpd - /home/mikewoz/ss papers/images [] E23]
Flle Edi Put Find Windows Medhl Help

createNode source-node|

cardioid

createNode left-ear|

Em’mect source-node FX—nDde(

Eurmect FE-node leftfear[ormd

Em’mect FX-node right- ear[

|pd mdioScapefWorkspace|

STEP 2:
{set parameters for all somdNodes)

addchild right-ear
1 setSensRolloff omni)
Eetliﬂdnﬁnlluff cardiuid(setPos 0 10 1.5]
[setDSP input_chl]| setDSP delay 500

send source-node- [send Fi node T

[Rolloff cardioid] [

setSens 0 0 -90|
setPos -0.5 0 0.4

send left-ear-T0

Rolloff cardioid|

setSens 0 0 90|
setPos 0.5 0 0.4

[send right-ear-I

Figure 5: The Pd patch associated with Figure 2.

4.1.1 DSP plugins

The ultimate aim of this framework is to help artists to
organize DSP processes in order to build complex interactive
musical systems. For this reason we keep the DSP methodol-
ogy quite generic, allowing a user to specify almost arbitrary
audio processing within each soundNode. The soundNode’s
dsp parameter is simply a pointer to a Pd plugin, and the
user is free to build any type of processing within that patch.
The one constraint is that the abstraction must have only
one input and one output (i.e., a monophonic patch). This
may seem like a significant constraint, but polyphonic DSP
can easily be accomplished by grouping nodes together in a
scene graph and copying audio signals between them.

+ dsp-delay.pd (500) —OX
Fle Edit Put Fnd Windows Media Help ~ input_chLpd O x
File Edit Put Find Windows Media Help
PO Feedback {0-1)
ade~ 1
delwcite~ $0-delay-line §1]

Figure 6: Two DSP plugins: A delay patch that
takes the delay time as an argument (left), and a
patch to read input from the soundcard (right).

Hence, considering again our example, we define DSP plu-
gins for each ear. The function of these plugins will be to
send the captured audio signal to the soundcard’s output
channels (presumably to a pair of connected headphones).
The DSP plugin for the source-node on the other hand, ac-

cepts the soundcard’s input channel (presumably a micro-
phone) and emits the result into the scene. Figure 6 shows
the latter plugin. Note that the inlet is ignored, and a sound
signal is only connected to the outlet of the patch. This is in-
dicative of a ‘source’ soundNode. A ‘sink’ soundNode would
on the other hand accept a connection from the inlet and
ignore the outlet. The figure also shows an FX-node, which
uses both; it takes the incoming signal, delays it, and out-
puts the result into the scene, thus acting both as a source
and sink.

4.1.2 Control & Parameter Mapping

-0OX
File Edit Put Fnd Wndows Media Help

 ic3-to-orientation.pd O x

File Edit Put Find Windows Media Help

+ height-to-delay.pd

[receive from_ic3|

route setPosition|

NOTE:
offset pitch by 90

'send source-node-dela

Figure 7: Two mapping plugins. The left routes
orientation sensor data to the radiation direction of
a soundNode. The right maps node height to the
delay time of its corresponding DSP plugin.

Similarly to providing arbitrary DSP possibilities, we al-
low for almost any mappings to be defined using plugins cre-
ated in Pd. These are simple Pd patches that can intercept
messages (from sensors, metronomes, or any soundNode pa-
rameter update) and re-route them as the user sees fit. For

example, in Figure 7 we see a patch that intercepts data re-
ceived from an orientation sensor and uses it to control the
radiation direction of a soundNode. The other patch in that
figure takes the current height of a soundNode to control
the delay time of the DSP.

5. GRAPHICAL RENDERING

It should be noted that the OSG is mainly used as a 3-D
rendering library. It is thus very easy to render our virtual
audio scene graphically for visual feedback and as an addi-
tional component of the user interface. One could design
an application for just one laptop and a set of headphones,
but if immersion is desired then multiple screens are needed
and hence multiple rendering machines need to be deployed.
As it turns out, OSG provides efficient mechanisms for dis-
tributed rendering by employing clever algorithms for scene
graph data structures. By keeping track of the bounding
region for each node’s subgraph, OSG can prune entire sec-
tions of a scene that do not need to be rendered. The only
thing that we need to do, is set the camera view for each ma-
chine, and an efficient distribution of rendering is realized,
where anything not in the viewing volume will not need to
be computed.

As a result, we have written a custom OSG application
that does not require Pd, and can be executed on a number
of rendering machines. This application includes a daemon
that listens and responds to network messages from a mas-
ter controller. Messages can, for example, be sent to set
the camera view. Yet more importantly, messages are sent
that construct and maintain the state of all soundNodes in
the virtual world. With this architecture, users can develop
immersive, multi-screen deployments that graphically show
what is happening within their virtual audio scenes.

6. CONCLUSIONS & DISCUSSION

We have described a framework for interacting with sound
in 3-D and for creating spatially organized audio process-
ing. This framework is supported by a software library
written using OpenSceneGraph and the Pure Data API. It
allows users to create virtual worlds that function as musi-
cal instruments and interactive sonic applications. We have
shown that a user can be modelled within such a virtual
scene using soundNode and soundConnection objects. DSP
and mapping plugins provide mechanisms for creating ar-
bitrary interactions between the various compenents in the
audio scene, and even input from external devices. When
all of these features work together, they provide a powerful
multimodal environment that can lead to many novel and
interesting applications.

The power of the framework is realized by the sophisti-
cated representation of soundNodes and their acoustic prop-
agation model. Providing users with the ability to control di-
rectivity of sound with high accuracy, and allowing the rules
of physics to be bent are both essential factors that are nec-
essary for using virtual environments in a musical context.
The traditional APIs and toolkits mentioned earlier are too
focused on simple spatialization tasks, and cannot be used
as effectively for musical purposes. Furthermore, the fact
that soundNodes can act as both sources and sinks allows
for localized DSP within a 3-D scene, which can accomplish
extremely complicated audio processing tasks. This enables
users to create virtual worlds that simulate almost any piece

of equipment that can be found in a sound studio (effects
processors, synthesizers, mixing consoles, etc.).

Typical musical tasks can thus be accomplished using
completely new metaphors, since they take place in contin-
uous 3-D space, and do not need to be logically organized
with patch cords and sound modules. Users will tend to
think of spatial relations as the factor that influences the
sound rather than the positions of sliders or knobs. This
is powerful idea, since humans have a great sense of spatial
understanding that they have acquired from the real world.
Feedback from the system is thus more natural and subcon-
scious, and less cognitive load is imposed on the performer
when trying to keep track of the state of an application.

The library along with supporting patches has been made
available for public download and use. A suite of editors
and sample applications, packaged as “AudioTwist”, is also
available [5]. The project will hopefully expand as new de-
velopers begin to add their own ideas and creations. In
time, we expect that several artists will be able to create
novel works of art, cutting-edge performances, and interest-
ing installations using the framework. We are eager to see
how this new way of thinking about music and sound in 3-D
will evolve.

7. ACKNOWLEDGEMENTS

The authors wish to acknowledge the generous support
of NSERC and Canada Council for the Arts, which have
funded the research and artistic development described in
this paper through their New Media Initiative. In addi-
tion, the authors are most grateful for the resources pro-
vided to the project by McGill University’s Centre For In-
telligent Machines, La Société Des Arts Technologiques, and
The Banff Centre for the Arts. These research centres have
provided productive and stimulating environments allowing
for the development and prototyping of this project.

8. REFERENCES

[1] Extensible 3D (X3D) ISO standard (ISO/IEC
19775:2004).
http://www.web3d.org/x3d/specifications/ISO-IEC-
19775-X3DAbstractSpecification /.

[2] OpenSceneGraph. www.openscenegraph.org.

[3] M. Danks and IOhannes m zmélnig. Gem.
http://gem.iem.at/.

[4] D. Henry. Pd internal messages.

http://puredata.info/community /pdwiki/PdInternalMessages.

[5] La Société des arts technologiques. The Open
Territories project. http://tot.sat.qc.ca.

[6] E. Scheirer, R. Vaaninen, and J. Huopaniemi.
AudioBIFS: Describing audio scenes with the MPEG-4
multimedia standard. In IEEE Trans. Multimedia,
volume 1, pages 237-250, 1999.

[7] M. Wozniewski, Z. Settel, and J. R. Cooperstock. A
framework for immersive spatial audio performance. In
New Interfaces for Musical Ezpression (NIME), Paris,
pages 144-149, 2006.

[8] M. Wozniewski, Z. Settel, and J. R. Cooperstock. A
paradigm for physical interaction with sound in 3-D
audio space. In Proceedings of International Computer
Music Conference (ICMC), 2006.

