Enabling Gestural Interaction by Means of Tracking Dynamical
Systems Models and Assistive Feedback

Yon Visell and Jeremy Cooperstock

Abstract— The computational understanding of continuous
human movement plays a significant role in diverse emergent
applications in areas ranging from human computer interaction
to physical and neuro- rehabilitation. Non-visual feedback can
aid the continuous motion control tasks that such applications
frequently entail. An architecture is introduced for enabling
interaction with a system that furnishes a number of gestural
affordances with assistive feedback. The approach combines
machine learning techniques for understanding a user’s gestures
with a method for the display of salient features of the
underlying inference process in real time. Methods used include
a particle filter to track multiple hypotheses about a user’s input
as the latter is unfolding, together with models of the nonlinear
dynamics intrinsic to the movements of interest. Non-visual
feedback in this system is based on a presentation of error
features derived from an estimate of the sampled time varying
probability that the user’s gesture corresponds to the various
tracked state trajectories in the different dynamical systems.
We describe applications to interactive systems for human gait
analysis and rehabilitation, a domain of considerable current
interest in the movement sciences and health care.

I. INTRODUCTION

Although there have been considerable advances in the
computational analysis and recognition of movement and
gesture in recent years, human interaction with the systems
that make use of them is frequently made more difficult than
necessary. This is due to the fact that the way that gestures
are being understood by the system may not be evident to
users as they are enacting them, typically because users are
not provided the kind of tangible and continuous feedback
that is instrumental in embodying and guiding everyday
interactions in the physical world. For example, a number
of authors have proposed control mechanisms for intelligent
homes that depend on the interpretation (by an invisible
computer agent) of sign-language like motions of the hands,
an approach that places a considerable burden on the motor
learning capabilities of users and on the inference capabilities
of the system. Problems of this nature are becoming more
critical as user populations grow to include people of widely
varying intrinsic sensorimotor capabilities, due to injury or
other disorders, and as applications specifically targeting the
rehabilitation of health related sensorimotor deficits have
come to the fore [1]. Likewise, in diverse areas of product
design, usability needs in the area of gesture-based inter-
action are becoming paramount, as spaces and devices that

This work is supported in part by the Centre for Interdisciplinary Research
in Music Media and Technology at McGill University.

Y. Visell and J. Cooperstock are with the Centre for Intelli-
gent Machines and Department of Electrical and Computer Engineer-
ing, McGill University, Montréal, Canada. yon@cim.mcgill.ca
jer@cim.mcgill.ca

afford such interactions via integrated computation, sensing
and actuation have grown ubiquitous. Devices already on the
market range from computer peripherals to mobile phones
and running shoes.

Non-visual display modalities can be preferable for im-
proving feedback in such systems, as they may more easily
be situated at an arbitrary input device, and hence closer
to the locus of interaction. Further benefits of such displays
include their ability to provide effective representations of
temporal features and to operate in situations in which
the visual modality is overtaxed, both of which have been
discussed extensively in previous literature [2][3].

A. Related work

A particle filter based recognizer for generating sonic
feedback to display a user’s input in applications such as
a mouse gestures task has been described by Williamson
and Murray-Smith [4][5]. (They describe related work on a
helicopter simulator control task as well.) Their recognizer
is built on template models of the gestures afforded by
the system. The system presented here is similar, but uses
the dynamical systems models of Schaal et al [6][7]. The
dynamical systems models have an advantage in their ability
to provide a rich prior model or the motion, representing
dynamically driven variations in the detailed path taken while
preserving other features of the trajectory (see Figure 2).

Strachan and Murray-Smith [8] described explorations
with gesture input for mobile devices based on the same
Dynamic Movement Primitives models that are adopted here.
However, the main focus of the present contribution relates
to issues of closed-loop interaction that were not entirely
addressed in their application. Furthermore, the gesture
recognition architecture described here is somewhat richer,
capable of tracking over time an arbitrary probability density
representing the correspondence between a user’s gesture and
an array of models.

Jenkins et al [9] have described a video-based recognition
system that uses movement primitives based on an ensemble
of recorded exemplars (essentially templates), together with
a particle filter. Their approach is similar to the forward path
of the architecture presented here, except that the movement
primitives in the present contribution are based on dynamical
systems models, which offer the relative advantages noted
above.

Particle filters were first applied to the problem of the
recognition of gestures observed in video sequences using
static temporal templates in work by Black and Jepson [10].



A number of other particle filter based methods for gesture
recognition have built on their original work.

Many other gesture recognition techniques are discussed
in the literature, including hidden Markov models (HMM),
time-delay and recurrent neural networks, and dynamic pro-
gramming algorithms, among others. Distinct advantages of
the gesture modeling method we have adopted include its
fine time-granularity, which is desirable in a closed loop
interactive system, and its robustness to variations in the
specific path an instance of a gesture may take. The fact that
the system presented here incorporates generative models for
the gestures provides, in addition, an important check as to
whether the employed model has captured the phenomena it
aimed to encode.

B. Facilitating Gestural Interaction by Means of Tracking
Nonlinear Dynamical Systems Models

Our system tracks the state of a user’s gestures, as relayed
by the sensors of some input device, and continuously
estimates a correspondence between this input and a number
of affordances, which are encoded as nonlinear dynamical
systems models that are learned from a dataset, as described
in Section II-A. A particle filter algorithm is applied as a
method for tracking hypotheses as to the correspondence
between the user’s input and the models. The information
provided by this inference mechanism is used to generate
parameters suitable for non-visual display in a closed-loop
interaction setting, in order to allow users to better guide their
gestures relative to those afforded by the system. Pending
applications of this system to gait analysis and rehabilitation
are described in Section IV.

II. GESTURE INPUT ARCHITECTURE

The system presented here is illustrated in Figure 1. Input
from the user is acquired by the input device’s sensors as
an N-dimensional temporal trajectory, and during training,
these are used to adapt a set of nonlinear dynamical systems
models to best match the supplied examples. During real-
time input, a set of particles, given by weighted states
of the learned nonlinear dynamical systems, is evolved in
tandem with the gestural input. The particles maintain a
probability distribution that tracks the system’s belief as to
the correspondence between the user’s input and learned
models. The error signals and weights that result are then
used to derive expected error signals relative to the system’s
belief, and these signals are used as parameters for a non-
visual display that guides the user in continuing to enact the
movement. These stages are described in more detail below.

A. Nonlinear Dynamical Systems Models

We approach the modeling problem by regarding the user’s
gesture as evidence of nonlinear dynamical system (NLDS)
that has given rise to it. We adopt the Dynamic Movement
Primitives (DMP) models of Schaal et al [6][7], which are
nonlinear dynamical systems capable of reproducing the
trajectory followed by a given motion. In our application,
an instance of a gesture is characterized by a trajectory z(t),

consisting of a vector of values (z1, z2,...) sensed from an
input device over some time interval ¢ € [0,7]. A DMP
models the resulting kinematics by means of a set of coupled
nonlinear differential equations with guaranteed convergence
properties. Those employed for the system described here
consist of a cascade of point attractor dynamics, with a
nonlinearity that may be adapted such that the intrinsic
dynamics of the DMP reproduce a given trajectory.

The system equations describing each component z = z;
of a trajectory are composed of a canonical system and a
transformation system. The canonical system is an attractor
that numerically integrates a phase variable ¢ that substitutes
for the role of time:

vt =0, (1—9¢)—v), ¢/T=v. (1)

The transformation system numerically integrates the dynam-
ical variables z, z,Z that describe each component of the
trajectory:

L.L/T:Cl{u(ﬂu(87z)7U)+f(¢,1/)7 (2)
2T =wu, $/T=a4(g—s) (3)

In these equations, each « and [ pair represents time
constants that are chosen for critical damping, 7 is a temporal
scaling factor, and the goal g represents a target value for
z to reach at the end of the trajectory. The term f(¢,v)
represents a nonlinearity that is adapted to reproduce the
desired dynamics. It is given the form of a set of weighted
Gaussian basis functions
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designed so that it vanishes at the endpoints of the movement.
The Gaussian basis functions have centers ¢; and bandwidths
h; which are chosen so that the ¢; are uniformly distributed
over the interval ¢ € [0, 1]. The weights w; are learned such
that the dynamics approximates the gesture’s trajectory, by
first integrating the canonical system, and substituting the
gesture trajectory into the transformation system, and solving
for f. Once this is done, one can apply standard regression
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Fig. 1.

The gesture input, inference and sonification generation scheme.
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Fig. 2. Several instances of a learned gesture that has been resynthesized
by one of the DMP, starting from an ensemble of different initial conditions.

formulae to estimate the w; from either a single gesture, or
from multiple examples [6][7].

By contrast with finite-state based models like the HMM,
where the gesture is encoded by statistics associated with a
sequence of discrete states, here it is encoded in the system
parameters of the DMP. The DMP is capable of synthesizing
a complete trajectory in a way that may be varied through
the modification of the parameters that govern its position z,
velocity Z, temporal scaling factor 7, and target configuration
g.

Figure 2 shows several resynthesized examples of a hand-
drawn figure corresponding to a horseshoe-shaped gesture, as
learned by a single DMP. The different trajectories, which
converge over time, correspond to varying a single parameter
of the model — the initial position. Other model parameters
can varied likewise. The learned figure acts in this respect
as an attractor for the writing motion. This is qualitatively
quite different from the notion of a template or a statistical
model for the movement.

B. PFarticle Filters for Gesture Input

The particle filter acts to track a probability distribution
representing the system’s belief over time as to the user’s
intended action, i.e. the correspondence of the latter with the
models encoded in the system. Our system implements what
is known as a regularized sequential importance resampling
(SIR) particle filter [11]. This uses N weighted samples to
approximate the trajectory describing the input gesture over
time. The samples consist of states z; = (¢, y¢, ¢, gt, Tt)
characterized by the following state variables:

e ¢ A class index, indicating the DMP model whose state

is being tracked

e y: A vector quantity providing the instantaneous value

of the gesture being modeled at time ¢

e y: A vector giving the instantaneous velocity of the
gesture

e g+ The current target (destination posture) for the
gesture

o 7; The current temporal scaling factor for the gesture,
relative to 1

At each time step, the weight for each particle is determined

by a fitness function giving the probability that the observed

input trajectory Z; = {z;,i = 1,...,t} up to time ¢t
corresponds to the trajectory X; = {x;,i =1...t} followed
by that particle. We adopt a fitness function generalized from
that presented by Black and Jepson in [10], given by
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where k is the index of the k*" particle, 3 is a hand-tuned
parameter governing the correlation length of the fitness
function, and oy, is an estimate of the prior variance of y for
the class of particle k. We estimate a diagonal covariance
from training instances. D is the ¢y distance between the
particle trajectory and the input on the given time window:

t
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The normalizing factor Z in (4) is the sum over unnormalized
fitness functions for all particles,

1
zZ= zk: ot ap exp(—BD(zi, ytk)) - (6)

The tracking process for each particle at each time step
proceeds as follows:

1) Update the parameters y;,y; by integrating one time
step of the corresponding DMP
2) Update the likelihood function p(Z;|X; ) using the
fitness function of eq. (4). The weight update is
then obtained via a fusion formula, setting w; o
wy—1p(Z¢| Xy ). The weight at the preceding timestep
is used as the prior probability at the next timestep.
3) Compute an effective particle number, given by Neg =
(3", wg), for the ensemble of weighted particles.
When it falls below a threshold value, perform an
importance resampling step (Figure 3):
a) Resample the discrete probability distribution
given by the weighted set {z; , wy  } by drawing
N, new particles from it. m copies of the jth
particle are created if it is drawn m times
b) Perform a regularization step [11] to optimally
perturb the continuous parameters characterizing
the states of the particles, so that those that are
duplicated have nonidentical states

The result of this process is a set of particle trajectories that
track evolving hypothesis states through the DMP models,
together with a set of evolving weights indicative of the
fitness of each of the particle trajectories in describing the
input gesture.

C. Recognition

We have not explicitly addressed recognition in the discus-
sion so far, as it is not the focus of this paper. However, the
framework delineated above allows us to infer the probability
that each gesture is being performed, and these probabilities
may be computed in terms of the fitness functions p(Z;| Xy ;).
Assuming each of the N classes to be a priori equally likely,
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Fig. 3. The importance resampling step, schematically illustrated, sees Ny,
new particles with uniform weights drawn from the sampled distribution
represented by the particles at timestep ¢. This operation is performed
whenever Ng falls beneath a given threshold. Those particles with the
highest fitness are more likely to be copied to the next generation. An
optimal regularization stage is employed to ensure that the resulting set of
particles have nonidentical states.

the probability of a class ¢ given the observed gesture Z; to
time ¢t may be obtained from Bayes’ theorem:

p(Zile)p(c) _ p(Zilc) ~ > kee P(Ze| Xt k)
p(Zy) Np(Zy) Np(Zy)

Where the last sum is over particles having the class label
c. This equation determines the class probability given the
input, within an overall factor p(Z;) that is independent of
the class.

p(elZ:) =

III. PARAMETERS FOR NON-VISUAL DISPLAY IN
GESTURE INPUT

The output of our system consists of a set of weights wy j,
and states x; j at each time instant ¢. Together these furnish
a sampled representation of the time-varying probability
distribution p(X;|Z;) that tracks the system’s understanding
of the gesture of the user.

The role for non-visual display in the system is to convey
information about the user’s performance relative to the
system’s inferences as they are occurring, in order that users
may better guide their actions. The approach we have taken
to non-visual display generation is that of parameter mapping
[12], which introduces a mapping layer to derive meaningful
values from the system output for display. Criteria and con-
siderations for parameter mapping with sampled probability
densities, and an auditory display that employs them, have
been described in related research [13]. A key point is to
insure the perceptual relevance and coherence of the auditory
display despite discontinuities in the underlying sample set
owing to the resampling stage in the particle filter algorithm.
For example, a display such as the spectral auditory synthesis
shown in Figure 4 would be recommended based on the
human auditory system’s capability to perceive the spectral
envelope of a sound independent of the local spectral details
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Fig. 4. Example of a spectral synthesis display for the expected squared
error of the gesture trajectory.

that may articulate it. A number of parameters for non-visual
display have been identified [13], and are summarized in
Table I. Figure 5 shows waveform and spectrogram images
of a sonification generated by this system in response to a
user’s input gesture.

A better understanding of the utility of the possible
additional dimensions of feedback for improving movement
performance is certainly one goal for research in this area
(for example, Williamson [5] provides a discussion from an
HCT standpoint). A complementary question that we have
considered is that of determining which features may be
most useful in allowing users to perceive an array of multiple
afforded movements that are expressed as co-evolving states
to that driven by the user, as in a system like that presented
here [13].

Fig. 5. Waveform and spectrogram images of the sonification generated in
response to the user’s input shown at top. User’s input can be discerned as
dotted black curve in top image. Both correspond to particles constrained
to a single gesture class.

IV. APPLICATIONS TO THE ANALYSIS AND
REHABILITATION OF GAIT

A motivating application for the present research is the
computational analysis of human walking, or gait. Recent
years have seen a growth in applications of gait analysis and



System parameter Name Possible display role
Wk Particle weight (conditional probability) Display ambiguity among hypotheses
Display the proximity of specific alternatives
Ytk Particle state Display the state of a hypothesis about the input
[y, — 2zl Particle error Display the error of the input relative to a hypothesis
Display a class or ensemble error
dm™(.)/de™ mth derivative of any of the parameters above | Display the current trend
Quicken the display (discussed in [5])
Ji ke = H;Tas(yt, & —zt)||? | Relative jerk Display input smoothness relative to model control policy

TABLE I
CANDIDATE PARAMETERS FOR THE DISPLAY OF THE PARTICLE-BASED GESTURE INPUT SYSTEM.

in the range of techniques employed in movement sciences
and clinical applications. The latter are widespread and
varied, ranging from the assessment of surgery outcomes
or musculoskeletal disorders affecting the lower body to
neurological disorders such as strokes [14][1]. Statistical
and machine learning models are becoming more broadly
adopted in gait analysis. Nonlinear machine learning models
(e.g. artificial neural networks) have sometimes been seen as
having drawbacks that arise from difficulties in meaningfully
interpreting model parameters.

Gait research has drawn extensively on the dynamical sys-
tems viewpoint to organize various concepts such as pattern
generation and correlations between movement degrees of
freedom [15][16][17]. This suggests an advantage of the sys-
tem described in this paper over competing machine learning
techniuges, owing to the fact that DMP model parameters
possess kinematic identities salient to the biomechanics of
gait. Consequently, it is possible to extract meaningful gait
features from learned models, or to present learned DMP
model parameters in an interpretable way to therapists.
Moreover, the generative nature of the model provides an
additional tool through which the analyst might synthesize
new gait variable time series that are typical of an individual
or group, for further examination or for instructional pur-
poses. As an example, figure 6 shows several instances of
a knee flexion-extension angle time series that have been
sampled from such a model learned from data acquired from
22 children. Whereas the source data constituted a digest
averaged from the individual cases, a model such as that
we present here may compactly represent both this average
behavior and the normative range of variability in the subject

group.
A. Non-visual feedback in gait rehabilitation

Rehabilitation of gait impairments has in the past relied on
manual intervention by therapists. This is both labor intensive
for therapists and of reduced benefit for patients, who can
better profit if they are enabled to control their own walking
movements during therapy. Benefit has recently been seen
from approaches that rely on interactive systems incorporat-
ing real-time sensing, analysis and feedback via robotically
supplied forces, and through visual, sonic, and vibrotactile
channels [18]. In interactive rehabilitation systems, feedback
typically plays a dual role of both facilitating motor control
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Fig. 6. Several resynthesized variants of a knee flexion-extension
angle time series that was learned by a phase oscillator version of
the DMP described in Section 2. (Source data courtesy of P. Sel-
ber, W. de Godoy via the Clinical Gait Analysis normative database:
http://www.univie.ac.at/cga/data/index.html).

during walking, and providing motivation relative to thera-
pist supplied goals for a training session. The neurological
nature of gait impairments arising from strokes and other
such disorders can increase the need for artificial feedback
during therapy, as intrinsic bodily feedback channels may be
impaired or absent [18]. Concrete benefits of biofeedback
for gait have been found in studies with patients having a
variety of disorders [19][1].

Real-time tools for gait analysis and feedback have pri-
marily been designed according to hand crafted statisti-
cal criteria and arbitrary display mappings (e.g. from gait
variable deviation or “error” to the abscissa on a time-
dependent graph [18]). Detailed criteria or tools for guiding
the design of visual or non-visual feedback stimuli have
been lacking in the biofeedback literature, despite the rich
existing literature on synthesis algorithms (e.g. sound and
haptic synthesis) and on the perceptual and task salience of
display mappings (e.g. auditory display) in human-computer
interaction. Approaches such as that presented in this paper
that are based on a fusion of analytic models with error-
based feedback could prove useful toward creating more
informative and usable displays for rehabilitation systems.



V. CONCLUSIONS

We have presented an architecture for enabling movement
and gesture based interaction in a way that incorporates
concurrent assistive, non-visual feedack, and have outlined
future applications to the improvement of systems for gait
analysis and rehabilitation. While recent theoretical and
practical advances in the computational understanding of
movement have been considerable, a significant challenge
has emerged out of the observation that many of those in
a position to be most aided by these technologies are also
those who may have the greatest difficulties in using them.
An approach to addressing this dischord may be to design
systems to be able to adapt to and compensate for the
sensorimotor deficits of their users, as we have attempted
to do here. More concretely, they may be organized to
provide for both the understanding of users’ actions and the
stimulation of their senses in a closed-loop negotiation of
the sort that reflects the interplay between perception and
action that surround everyday tasks in the real world [20].
This represents a key goal informing our ongoing research
in this area.
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