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Abstract: The study of automatic emotional awareness of human subjects by computerized systems is a promising 
avenue of research in human-computer interaction with profound implications in media arts and theatrical 
performance. A novel emotion elicitation paradigm focused on self-generated stimuli is applied here for a 
heightened degree of confidence in collected physiological data. This is coupled with biosignal acquisition 
(electrocardiogram, blood volume pulse, galvanic skin response, respiration, phalange temperature) for 
determination of emotional state using signal processing and pattern recognition techniques involving 
sequential feature selection, Fisher dimensionality reduction and linear discriminant analysis. Discrete 
emotions significant to Russell’s arousal/valence circumplex are classified with an average recognition rate 
of 90%. 

1 INTRODUCTION 

Emotion classification based on external data 
collection schemes, such as speech analysis and 
facial-expression recognition from images has been 
studied extensively.  The literature offers numerous 
examples of relatively acceptable recognition rates 
(Black et al., 1995; Lyons et al., 1999; Bartlett et al., 
1999; Ververidis et al., 2004). However, because 
these systems require sensors, such as cameras or 
microphones, focused directly on the subject, they 
are restrictive in terms of movement and problematic 
in terms of signal interference from other devices. 
Moreover, video analysis methods tend to encourage 
exaggerated physical expressions of emotion that are 
often artificial and uncorrelated with the actual 
emotion being experienced by the individual. 

In contrast, biosignal analysis, based on skin 
surface sensors worn by the user, may be a more 
robust and accurate means of determining emotion.  
This is because the signals correspond to internal 
physiology, largely related to the autonomous 

nervous and limbic systems, rather than to external 
expressions that can be manipulated easily. 
However, emotional state recognition by means of 
biosignals analysis is also problematic. This is due in 
part to the movement sensitivity of physiological 
sensors to such signals as electrocardiograms (ECG) 
and galvanic skin response (GSR). Muscle 
contractions are induced by electrical neural 
impulses, which in turn are picked up by the devices 
designed to measure differences in electrical 
potential.  These may cause noise in the form of 
signal fluctuations.  Furthermore, despite the 
evidence from psychophysiology suggesting a strong 
correlation between human emotional states and 
physiological responses (Watanuki et al., 2005; 
Cacioppo et al., 1990), determining an appropriate 
mapping between the two is nevertheless non-trivial. 

Our interest in these techniques differs 
significantly from previous work. Rather than 
recording and classifying how people respond to 
external stimuli such as culturally meaningful 
images, sounds, film clips, and text, we are in the 
process of developing a biometrically driven 



 

multimedia instrument, one that enables a performer 
to express herself with artistry and emotional 
cohesiveness. The goal is to provide a rich, external 
manifestation of one’s internal, otherwise invisible, 
emotional state. With training, it is our hope that the 
resulting system, one that is coupled to the 
performer’s emotional intentionality rather than to 
external gestures, can become as expressive and 
responsive as a fine musical instrument.  Thus, 
rather than attempt to recognize and label human 
emotional states, our goal is to investigate the 
mapping of these states to expressive control over 
virtual environments and multimedia instruments.  

From an artistic perspective, the instrument 
interface should support the articulation of emotion 
in a meaningful manner, with acuity and subtlety, 
allowing it be played with sensitivity and nuance. 

We see the development of this instrument as a 
two-stage process. The first phase, described in this 
paper, deals with the question of emotion capture, 
that is, extracting meaningful data from the range of 
sensors available to us.  

The second stage, which we discuss briefly in 
Section 5, relates these signals to the output of the 
instrument and how it is designed to be used in a 
performance setting.  Because the instrument is 
ultimately a highly enriched biofeedback device, a 
performer's response to anything and anyone she 
encounters, including the audience, instantly 
manifests all around her.  To bring it under her 
control, she must first compose herself. This 
involves using the instrument as a feedback device 
to return to a neutral state from which all emotions 
are potentially accessible.  Once she has done so, she 
can put the instrument to its true use, directing her 
emotions outward in the act of creative composition.  

The remainder of this paper is organized as 
follows. Our emotion elicitation method, used to 
gather the physiological data, is described in Section 
3.  Next, the recognition engine, including feature 
selection, reduction and classification, is described 
in Section 4. Finally, Section 5 concludes with a 
discussion of some future avenues for research. 

2 RELATED WORK 

Ekman’s emotion classification scheme (Ekman, 
2005) included six principal, discrete and universal 
classes of affect: anger, joy, fear, surprise, disgust 
and sadness. Russell’s arousal/valence circumplex 
(Posner et al., 2005) introduced a continuous, analog 
mapping of emotions based on a weighted 
combination of arousal intensity and emotional 

valence (negative to positive). Figure 1 depicts this 
two-dimensional space with an example set of 
emotions.  

For our purposes, both types of representations 
are useful for “playing” the instrument represented 
by the high-level schematic of Figure 2: discrete 
states serving as coarse control, with the analog 
input driving fine-tuned and subtle variations.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Russell’s arousal/valence circumplex 
(reproduced from Posner et al., 2005) 

Previous studies have demonstrated that 
emotional arousal and valence stimulate different 
brain regions (Anders et al., 2004) and in turn affect 
peripheral systems of the body. Significant 
physiological responses to emotions have been 
studied, showing, for example, measurable changes 
in heart rate and phalange temperature in fearful, 
angry and joyful states (Ekman et al., 1983). 

Emotional state recognition using physiological 
sensors has been investigated by others. Picard 
(Picard et al, 2001) obtained good recognition 
results (81.25% accuracy) on eight emotions using 
one subject stimulated with personally selected 
images and four physiological sensors: blood 
volume pulse (BVP), galvanic skin response (GSR), 
electromyograph, and respiration). Our results, 
restricted to four emotions, are similar, but the 
critical difference between our approaches is the 
elicitation process. While Picard uses images to 
elicit emotion, we focus on an involved self-
generation of affective states.  This, we believe, has 
important implications for real-world theatrical 
performance, where emotions are continuously 
varying as opposed to discrete. Capturing the subtle 
dynamics of emotion is vital to attaining the 
cognitive and emotive skills required for mastering 
control of the instrument. 
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Figure 2: Biosignals-driven Emotional-Imaging Generator. 

3 EMOTION ELICITATION 

As noted above, we are primarily interested in how 
self-generated emotional states can be mapped 
through biosignal analysis to the proposed 
instrument. Clearly, the performer must be skilled in 
the art of accessing and articulating emotion. Just as 
with learning any musical instrument, feedback must 
be provided that connects her meaningfully both 
with the appropriate skill level and emotional 
experience.  
 As a first step in investigating these issues, 
we want to capture biosignal data of maximum 
possible validity. Gaining access to the ground truth 
of human emotion remains an elusive goal.  
Nevertheless, we can obtain a better labelled set of 
input than that available through generic stimuli, as 
used by other researchers.  To do so, we interact 
directly with the experimental subject to generate 
the stimuli. This avoids the potential problems, 
articulated by colleagues, of subjects not responding 
to a particular stimulus as expected, or verbally 
expressing an emotion “they think the stimulus is 
supposed to evoke.”  

Of course, this necessitates that the stimulus 
be highly personalized and subjective.  The benefit 
is the potentially greater physiological validity of the 
recorded data that is then used for training (or 
calibrating) our system. As seen in the results of 
Section 4, we succeed in obtaining an encouraging 
correct classification result over four emotions of 
90%. 

3.1 Experimental Subject 

To maximize the validity of our experimental data, 
we worked with a professional method actor, who 
was guided by one of the authors (Deitcher), an 
experienced theatre director.  Our subject has had 
the opportunity to methodically investigate an 
extraordinarily wide array of characters and 
situations. Effective emotional solicitation from 
someone with this kind of experience and flexibility 
requires the sensitivity to anticipate relevant 
emotional connections.  It also requires the ability to 
ask the questions and define the exercises that will 

allow these emotions to emerge.  In the broadest of 
terms, by having the actor play scenes, sing songs, 
follow guided visualizations and remember events 
from her own life, we were able to elicit a large and 
complex range of emotional landscapes. Her focused 
intentionality was responsible for engendering a 
high degree of confidence in the collected 
physiological data. 

3.2 Experimental Data Collection 

Experiments were conducted in a quiet, comfortable 
lab environment. The subject either remained seated 
or standing and was instructed to limit her body 
movement to minimize motion artefacts in the 
collected signals. The biosignals were recorded 
using Thought Technology’s ProComp Infiniti 
biofeedback system using five sensor channels: 
GSR, ECG, BVP, phalange temperature and 
respiration, all sampled at 256 Hz. Each trial was 
also videotaped with a synchronization signal to 
align the video recording with the biosignals. 

3.3 Data types 

Two types of data were recorded: discrete emotional 
states and the responses to complex emotional 
scenarios. Typical trial times of 60 and 300 seconds 
were used for each type of data, respectively. A 
fifteen-minute break was taken between each trial so 
that the subject could return to her baseline, 
emotionally relaxed state. 

The discrete class of data afforded a simple 
labelling of emotions, as expressed by the subject 
during each trial. These were used primarily for 
classifier training and validation. During these 
experiments, the subject was asked to experience 
four emotional states in turn (joy, anger, sadness, 
pleasure), while vocalizing what she was feeling. A 
post-trial questionnaire was used to determine a 
subjective assessment of the intensity of the sensed 
emotion, on a numeric scale from one to five. 
Twenty-five trials of each of the four emotions were 
recorded. 

For the complex scenarios, data segments were 
recorded while the subject acted out “scenes” of 
fluid and varying emotional states. Such experiments 
will be used to study the body’s psychophysiological 
responses during emotional transitions. These 
scenarios are theatrically dynamic, and thus 
meaningful in investigating the performance 
possibilities of our proposed instrument. 
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4 RECOGNITION ENGINE 

Our preliminary investigations deal only with the 
classification of discrete emotional states to validate 
our paradigm of emotion elicitation, described in the 
previous section. The recognition engine comprises 
two main stages: biosignals processing and 
classification, both implemented in Matlab. 

The emotional state recognition system utilizes 
five physiological signals: electrocardiogram (ECG), 
GSR, BVP, respiration and phalange temperature. 
We employ digital signal processing and pattern 
recognition, inspired by statistical techniques used 
by Picard. In particular, our use of sequential 
forward selection (a variant of sequential floating 
forward selection), as used by Picard, choosing only 
classifier-optimal features, followed by Fisher 
dimensionality reduction, are similar. For the 
classification engine, however, we implemented 
linear discriminant analysis rather than the 
maximum a posteriori used by Picard. 

4.1 Biosignal processing 

The raw, discrete biosignals go through four steps to 
produce classifier-ready data, as shown in Figure 3. 
 

Figure 3: Biosignal processing engine. 

4.1.1 Pre-processing 

Emotionally relevant segments of the recordings that 
are free of motion artefacts are hand-selected and 
labelled with the help of the video recordings and 
responses to the questionnaire. High-frequency 
components of the signals are considered to be noise 
and filtered with a Hanning window (Oppenheim, 
1989). 

4.1.2 Feature extraction 

We extract six common statistical features from each 
type of the noise-filtered biosignals, of size N 
( [ ]NnX

n
...1, ! ), and its first and second 

derivatives: 
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3. Filtered signal mean of absolute value of the 
first difference: 
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4. Normalised signal mean of absolute value of 
the first difference: 
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5. Filtered signal mean of absolute value of the 
second difference: 
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6. Normalised signal mean of absolute value of 
the second difference: 
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 represents the normalised signal 
(zero-mean, unit variance): 
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In addition to the previous features, used for 

each biosignal, other signal-specific characteristics 
are computed.  These include, for example, heart 
rate mean, acceleration/deceleration and respiration 
power spectrum at different frequency bands. 
Combining the statistical and signal-specific 
characteristics, a total of 225 features are thus 
computed from the five types of biosignals. 

4.1.3 Automatic feature selection 

Feature selection is a method widely used in 
machine learning to select a subset of relevant 
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features in order to build robust learning models. 
The aim is to remove most of the redundant and 
irrelevant features from the data to alleviate the 
often detrimental effect of high dimensionality and 
to improve generalization and interpretability of the 
model. 

The greedy sequential forward selection (SFS) 
algorithm is used to form automatically a subset of 
the best n features from the original large set of m (n 
< m). SFS starts with an empty feature subset and on 
each iteration, exactly one feature is added. To 
determine which feature to insert, the algorithm 
tentatively adds to the candidate feature subset one 
that is not already selected and tests the accuracy of 
a k-NN classifier built on this provisional subset. A 
feature that results in the highest classification 
accuracy is permanently included in the subset. The 
process stops after an iteration where no feature 
addition causes an improvement in accuracy. The 
resulting feature set is now considered optimal. 

The k-NN classifier used here classifies a novel 
object r by a majority of “votes” of its neighbours, 
assigning to r the most common class among its k 
nearest neighbours, using the Euclidean distance as 
metric. This type of classifier is chosen because it is 
a simple and efficient performance criterion for 
feature selection schemes and is considered more 
robust than using a single measure of distance, as is 
the case for many feature selection schemes. It was 
found through iterative experimentation 
using [ ]9,1!k , that a value of k = 5 resulted in the 
best possible selected feature subset. 

4.1.4 Feature space reduction 

Fisher dimensionality reduction (FDR) seeks an 
embedding transformation such that the between-
class scatter is maximized and the within-class 
scatter is minimized, resulting in a low-dimension 
representation of optimally clustered class features. 
FDR is shown to produce optimal clusters using c – 
1 dimensions, where c is the number of classes. 
However, if the amount of training data or the 
quality of the selected feature subset is questionable, 
as is the case in many machine learning applications, 
the theoretically optimal dimension criterion may 
lead to an irrelevant projection which minimizes 
error in the training data, but performs badly with 
testing data (Picard et al., 2001). In our case, a two-
dimensional projection resulted in an overall best 
classification rate using linear discriminant analysis 
(LDA) to sequentially test with 
dimensions [ ]3,1!d . Figure 4 demonstrates the 
class clustering of four emotional states: joy, anger, 

sadness, pleasure (JO, AN, SA, PL), projected on a 
2D Fisher space during one of the validation steps. 
The four emotions were chosen given that they lie in 
different quadrants of Russell’s arousal/valence 
circumplex (Figure 1).  
 

Figure 4: 2D Fisher projection (4 classes) 

4.2 Biosignal classification 

Three popular classification schemes were tested to 
classify the four emotional states: LDA, k-NN 
( [ ]9,1!k ) and multilayer perceptron (MLP). LDA 
was found to outperform both the best k-NN (k = 7) 
and MLP by 4% and 11%, respectively. LDA builds 
a statistical model for each class and then catalogues 
novel data to the model that best fits. We are thus 
concerned with finding which discriminant function 
best separates the emotion classes. LDA finds a 
linear transformation Φ of the x and y axes (8) that 
yields a new set of values providing an accurate 
discrimination between the classes. The 
transformation thus seeks to rotate the axes with 
parameter v so that when the data is projected on the 
new axes, the difference between classes is 
maximized. 
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Due to the small feature dataset size, leave-one-

out cross-validation was used to test the 
classification scheme. This involves using a single 
item of the set as the validation data, and the 
remaining ones as training data. This process is 
repeated until each item in the dataset is used once 
as the validation data. At each iteration, SFS and 
FDR are applied to the new training set and the 
parameters found (selected features and Fisher 
projection matrix) are applied to the test set. The 

0.76 0.78 0.8 0.82 0.84 0.86 0.88
0.58

0.585

0.59

0.595

0.6

0.605

0.61

0.615

0.62

0.625

Joy

Anger

Sadness

Pleasure



 

mean classification rate is computed using the result 
produced at each step. Using this method, our 
biosignal classification system produced an average 
recognition rate of 90% on the four emotional states. 
Table 1 shows the confusion matrix for the 
classification. 
 

Table 1: LDA classifier confusion matrix 
I/O JO AN SA PL % 

JO 0.96 0 0 0.04 96 

AN 0 1.00 0 0 100 

SA 0.04 0 .92 0.04 92 

PL 0.12 0 0.16 0.72 72 

5 CONCLUSIONS 

A novel emotion elicitation scheme based on self-
generated emotions is presented, engendering a high 
degree of confidence in collected, emotionally 
relevant, biosignals.  Discrete state recognition via 
physiological signal analysis, using pattern 
recognition and signal processing, is shown to be 
highly accurate. A correct average recognition rate 
of 90% is achieved using sequential forward 
selection and Fisher dimensionality reduction, 
coupled with a Linear Discriminant Analysis 
classifier. 

We believe that the high classification rate is due 
in part to our use of a professional method actor as 
test subject. It is speculated that normal subjects 
would lead to lower rates because of the high 
variability of emotion expressivity across a large 
population pool. It is an avenue of research for us to 
test the generalization of this type of machine-based 
emotion recognition. 

Our ongoing research also intends to support 
real-time classification of discrete emotional states.  
Specifically, continuous arousal/valence mappings 
from biosignals will drive our emotional-imaging 
generator for multimedia content synthesis and 
control in a theatrical performance context.  In 
addition, we are exploring the therapeutic and 
performance training possibilities of our system. 
Because what we are building is fundamentally an 
enriched biofeedback device, we anticipate 
applications ranging from stress reduction for the 
general population to the generation of concrete 
emotional expression for those with autism or other 
communication disorders.     
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