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Stéphane Pelletier and Jeremy R. Cooperstock

McGill University
Department of Electrical and Computer Engineering
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ABSTRACT

Image restoration is an ill-posed problem that must be regular-
ized in order to reduce noise amplification in the restored im-
age. Although quadratic penalty terms allow for fast restora-
tion algorithms based on the Fast Fourier Transform (FFT),
they often lead to images whose discontinuities are not well
preserved. On the other hand, edge-preserving penalty terms
can produce better results at the expense of computational
efficiency. A restoration technique exploiting the Woodbury
matrix identity was recently presented [5]. However, its per-
formance decreases when the number of discontinuities be-
come significant. To overcome this problem, we propose the
use of a nonlinear conjugate gradient method in conjunction
with a circulant preconditioner that can be updated quickly at
each iteration. Experiments with simulated and real data are
employed to demonstrate the effectiveness of our approach.

Index Terms— Image restoration, edge-preserving regu-
larization, Huber prior, preconditioning

1. INTRODUCTION

High quality images are desired and often required in various
applications since they can provide details that are critical to
the success of certain tasks. Image restoration attempts to
reverse the degradation process undergone by a blurred and
noisy image in order to recover the original image [1]. Since
this task is ill-posed at worst and ill-conditioned at best, it
must be reformulated into a better conditioned problem to
reduce noise amplification in the restored image. Although
quadratic penalty terms allow for fast algorithms based on the
Fast Fourier Transform (FFT), they often yield images whose
discontinuities are not well preserved [2]. To overcome this
difficulty, edge-preserving penalty terms are often employed
[3][4]. However, the problem is then shift-variant and the
computational efficiency of the FFT cannot be exploited.

A restoration technique exploiting the Woodbury matrix
identity was recently presented [5], in which the restored
image is obtained by adding the results of two independent
restorations problems; one produces an image that comes
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directly from a FFT restoration, whereas the other involves
solving a system of linear equations whose size is propor-
tional to the number of edges in the image. In some imaging
scenarios, the number of edges, and in turn, the computa-
tional complexity, can be sufficiently high to preclude the use
of this method.

As a solution to this problem, we show that a simple non-
linear conjugate gradient method with a circulant precondi-
tioner, updated at each iteration, can provide significant speed
improvement. An edge-preserving convex penalty term based
on the Huber function [6] is employed. Furthermore, the com-
putational efficiency and memory requirements of the pro-
posed method do not depend on the number of edges in the
restored image.

2. BACKGROUND

2.1. Problem formulation

The problem consists of restoring an N×N image from a
blurred and possibly noisy image of the same size. The image
formation model, which expresses the relationship between
the degraded image and the original image, is often assumed
to be linear and can be expressed in matrix form as:

y = Gx+ n, (1)

where y ∈ RN2
is a vector whose elements are the observed

pixels, G is a matrix describing the imaging geometry, x ∈
RN2

is a vector representing the (unknown) original image
and n is an additive Gaussian noise vector. One way of find-
ing a regularized solution to Equation (1) consists of minimiz-
ing the penalized least-squares cost function Φ : RN2 → R,
which is defined as:

Φ(x) =
1
2

[y −Gx]T [y −Gx] + λr(x), (2)

where r : RN2 → R is a regularizing penalty function [7]
and λ is a parameter that controls the tradeoff between con-
sistency with the observed data and agreement with a priori
knowledge about the solution.

In order to facilitate the minimization process, convex
functions are often employed to define the regularizing term



r. One useful edge-preserving convex penalty term is based
on the Huber function [6], which we define as

ψT (x) =

{
x2

2 , |x| ≤ T
T |x| − T 2

2 , |x| > T
. (3)

This function quadratically penalizes small discontinuities in
the image, which are often associated with noise, whereas
large discontinuities (actual edges) are linearly penalized. Fi-
nite difference approximations to second-order derivatives are
used as the image smoothness measure at pixel xk,l, which are
defined as:

dTk,l,0x = xk,l+1 − 2xk,l + xk,l−1

dTk,l,1x =
1
2

(xk−1,l+1 − 2xk,l + xk+1,l−1)

dTk,l,2x = xk−1,l − 2xk,l + xk+1,l

dTk,l,3x =
1
2

(xk−1,l−1 − 2xk,l + xk+1,l+1).

(4)

The regularizing term r can then be expressed as

r(x) =
3∑

m=0

N2∑
k=1

ψT ([Dmx]k), (5)

where Dm is a N2× N2 matrix representing the convolution
operator corresponding to

∑
k,l d

T
k,l,m.

2.2. Limits of Pan and Reeves’s method

Pan and Reeves propose an iterative scheme in which the
objective function (2) is majorized at each iteration by a
quadratic function whose minimum determines the majoriz-
ing function in the next iteration. By repeating this step
several times, the iterative process is guaranteed to converge
to the minimum of Φ; see [5] for more details. At each
iteration, minimizing the quadratic function is achieved by
solving a system of linear equations of the form:

(
GTG + λ

3∑
m=0

DT
mΓmDm

)
x = GT y, (6)

where Γm is an N2×N2 diagonal matrix whose kth element
is:

Γ(k)
m =

{
1, |[Dmx]k| ≤ T

T
|[Dmx]k| , otherwise

. (7)

The Woodbury identity is employed to accelerate the compu-
tation of the solution of Equation (6). The bottleneck of this
approach is the solution to a dense system of K unknowns,
where K is the number of elements in {Γm}3m=0 that are not
equal to 1. Therefore, the effectiveness of this optimization
depends on the magnitude of K, which is assumed to be of
the order of N .

3. PROPOSED ALGORITHM

Since the cost function (2) is convex, its minimization is
equivalent to finding the zero of its gradient:

−∇Φ(x) = GT [y −Gx]− λ
3∑

m=0

DT
mz

(m)(x), (8)

where z(m) : RN2 → RN2
is defined by

z
(m)
k (x) , ψ̇T ([Dmx]k).

We propose to use the preconditioned nonlinear conjugate
gradient (PNCG) method with the Fletcher-Reeves update
rule [8], in which each iteration involves the following oper-
ations:

rn = −∇Φ(xn)(gradient; see (8))

pn = M−1rn(preconditioner)

βn =
< rn, pn >

< rn−1, pn−1 >
(Fletcher-Reeves rule)

dn = pn + βnd
n−1(search direction)

αn = argmin
α

Φ(xn + αdn)(line search)

xn+1 = xn + αnd
n(solution update)

3.1. Preconditioner M

The preconditioner M should normally approximate the Hes-
sian matrix of the objective function at xn, i.e., the current
iterate [3]. Since the Huber function is not twice continu-
ously differentiable, this matrix is not defined everywhere. To
circumvent this difficulty, we approximate it by the Hessian
matrix of the quadratic majorizing function, which is given
by the coefficient matrix of Equation (6). We then define the
preconditioner as

M = GTG + λβ

3∑
m=0

DT
mDm, (9)

where β is the average of the diagonal elements of {Γm}3m=0.
Although one might consider adapting the combined diago-
nal/circulant preconditioner proposed by Fessler and Booth
[3] to cope with the diagonal matrices {Γm}3m=0, we per-
formed a few experiments that did not produce satisfying re-
sults. Finally, we remark that since G and D have a block
circulant with circulant block structure, the proposed precon-
ditioner can be inverted efficiently using the FFT.

3.2. Line search

At each PNCG iteration, a line search is employed to find
the minimum of Φ along the current search direction dn. Al-
though there exist general-purpose methods for doing so, we



use an approach that exploits the fact that the cost function (2)
is a sum of quadratic functions and Huber functions. More
specifically, we apply a technique similar to the iterative ma-
jorizing approach used by Pan and Reeves; the main differ-
ence is that in our case, the majorization is performed in one
dimension only, namely along the current search direction.
Typically, only three or four iterations are necessary to mini-
mize Φ.

4. EXPERIMENTS

The effectiveness of the proposed preconditioner for accel-
erating the minimization of the cost function (2) is demon-
strated using both simulated and real image data. The images
shown in Fig. 1(a) and Fig. 1(d) are employed as ground-
truth images in the simulation part. To facilitate later com-
parison with restored images, the regions inside the boxes are
enlarged and shown in Fig. 1(b) and Fig. 1(e). Two degraded
images are obtained by blurring the ground-truth images us-
ing a 5×5 Gaussian blur kernel with variance 2; noise is added
to the second blurred image (Lena) such as to obtain a signal-
to-noise ratio (SNR) of 40 dB. Fig. 1(c) and Fig. 1(f) show
the regions in the degraded images corresponding to Fig. 1(b)
and Fig. 1(e) respectively. Fig. 2(a) shows a real blurred im-
age captured with a camera that was deliberately adjusted to
be slightly out of focus; the region identified by the box is
enlarged and shown in Fig. 2(b). The unknown camera PSF
was determined roughly by trial and error and is assumed to
be a 12×12 Gaussian blur kernel with variance 1.8.

Fig. 3 presents six restoration experiments whose inputs
are the degraded images of Fig. 1 and Fig. 2. All compu-
tations are done using Matlab on a Dual-Core AMD Opteron
Processor 2216 machine. In each experiment, the same de-
graded image is restored twice; once with the nonlinear con-
jugate gradient (NCG) algorithm, then using the PNCG al-
gorithm with the proposed preconditioner. Since both algo-
rithms employ the same values of λ and T , their restored im-
ages are almost identical and only one of them is shown per
restoration scenario. The actual difference between the meth-
ods is the speed at which the restorations are performed; to
demonstrate this, plots showing the value of the cost func-
tion versus time using both approaches are provided. Also,
the number of unknowns K of the dense matrix that would
need to be solved with Pan and Reeve’s method is indicated,
along with the space in memory required to store it. Clearly,
the amount of memory required would certainly render inef-
ficient their method in the experiments considered here.

In all six scenarios, one can see that the proposed pre-
conditioning approach provides an improvement in the con-
vergence rate over the unpreconditioned algorithm. However,
one can observe that for higher values of λ, the difference
in performance between NCG and PNCG diminishes. This
is due to the fact that increasing the weight of the regular-
ization prior in the cost function makes the initial problem

better conditioned, which reduces the need for precondition-
ing. However, this tends to produce smoother images, which
might not always be desirable. On the other hand, reducing
the value of λ too much can amplify noise in the restored
image. It is important to mention that preconditioning does
not make the restored image look better or worse, it just ac-
celerates the computation of the solution. The values of the
parameters must be chosen by taking into account the level of
noise in the observed data, a problem that is not addressed in
this paper.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Simulated degraded images. (a) First ideal image
(256×256). (b) Region indicated in a). (c) First degraded im-
age (5×5 Gaussian blur with var. 2). (d) Second ideal image
(512×512). (e) Region indicated in d). (f) Second degraded
image (5×5 Gaussian blur with var. 2 + 40dB SNR Gaussian
noise).

(a) (b)

Fig. 2. Degraded image from a real camera. (a) Captured
image (256×256). (b) Region within the box in a).

5. CONCLUSIONS

In this paper, a method for accelerating the computation of
image restoration problems involving an edge-preserving
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Fig. 3. Effect of proposed preconditioner on the convergence rate of six restoration scenarios. For each experiment, the value
of the cost function versus time (left) and the restored image (right) are shown, along with the values of λ and T . The number
of unknowns K in the dense matrix that would need to be solved with Pan and Reeve’s method is also indicated.

Huber-Markov prior was presented. It was shown that this
technique can be effective when the number of edges is high.
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