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Abstract

This article presents a probabilistic approach to the
tracking and estimation of the lower body posture of users
moving on foot over an instrumented floor surface. The lat-
ter consists of an array of low-cost force platforms provid-
ing intermittent foot-floor contact data with limited spatial
resolution. We use this data to track body posture in 3D
space using Bayesian filters with a switching state-space
model. Potential applications of this work to person track-
ing and human-computer interaction are described.

1. Introduction

3D human posture tracking is a classic challenge in com-
puter vision and pattern recognition. Computer vision tech-
niques have been the most widely used for this purpose
[7, 8], although several researchers have investigated hu-
man tracking via in-floor sensor arrays [10, 11, 1]. Com-
mon challenges of person tracking in these domains include
the loss of 3D pose information through observation via the
sensor array, and the underlying complex dynamics of hu-
man motion. Missing information plays an important role
in both settings. Losses due to occlusion in video-based
tracking are somewhat analogous to the loss of observations
while feet are out of contact with the ground during tracking
via a floor-based array. Overcoming such missing informa-
tion has, in part, motivated the approach presented here.

Although motion capture and video can provide high-
resolution 3D position information for human tracking, they
are not always available and are prone to visual occlusion.
Furthermore, state of the art methods for inferring human
contact interactions from video provide inaccurate informa-
tion about interaction forces between body and ground [3].
Such forces are highly characteristic of the individuals and
activities generating them (as evidenced in the references
given below).

Bayesian filtering provides a unifying view of diverse
probabilistic tracking methods. It has been extensively ap-
plied to problems in object, person, or context tracking

[4, 17]. The effectiveness of such methods stems from their
ability to integrate information acquired over time in ways
that respect the structure and dynamics of the object or in-
dividual being tracked. Nonparametric Bayesian filtering
techniques, like the particle filter based model used here,
make it possible to perform tracking without making un-
necessary assumptions about the form taken by those dis-
tributions or the dynamics governing them, by maintaining
many hypotheses in parallel.

The system presented here consists of a posture tracking
system based on a distributed, sparse in-floor sensing array.
Prior literature on the analysis of foot-floor contact forces
has addressed applications to immersive interactive media
[12], pedestrian identification [11, 16], gait and dance anal-
ysis [13], among others [21, 15, 9, 6]. Here, similar data
is used for 3D kinematic tracking of users’ lower bod-
ies, a task that has received less attention in prior research
on floor-sensing arrays. Murakita et al. utilized a Markov
Chain Monte Carlo method to track pedestrians via an array
of binary pressure sensors [10], albeit with much larger er-
rors (typically 0.6 m) than what we achieve here (Sec. 4).
Yin and Pai tracked whole-body movements via a high-
resolution (and costly) floor sensing array, based on the
similarity of force patterns to those recorded in a database
of movements [21]. However, their system was limited to
tracking relative to a predefined set of static poses.

Our intended applications involve both person tracking
and interaction with floor-based touch displays via the feet
[20]. In both cases, we are interested in tracking the 3D
kinematics of the lower body of moving persons, with an
emphasis on the locations of their feet. Although existing
force sensing arrays can provide accurate information about
foot-floor contact forces, the achievable resolution is often
limited by cost constraints. In addition, mappings from pat-
terns of foot-floor forces to body posture are complex and
one-to-many. Effective use of prior knowledge about body
structure, movement, and walking mechanics is required in
order to track posture accurately.



2. System Configuration

The sensing floor (Fig. 1) consists of a 6×6 array of rigid
tiles, 30 cm on each side. Each tile is instrumented with
four resistive force sensors (Interlink model 402), which
are located at the corners. Thus, the nominal linear sens-
ing resolution of this array is 15 cm. In addition, each tile
includes a wide bandwidth vibrotactile actuator [18], which
although unused here, does modestly influence the sensor
measurements, due to its weight [20]. Analog data from
the force sensors are conditioned, amplified, and digitized
via 32-channel, 16-bit data acquisition boards. Each sen-
sor is sampled at a rate of up to 1 kHz transmitted over a
low-latency Ethernet link. An array of six small-form-factor

Figure 1. Illustration of the distributed floor
interface, with components labelled.

computers is used for force data processing.
For applications that do not require kinematic track-

ing, we infer foot-floor contact loci using intrinsic contact
sensing techniques [20], attaining an effective resolution of
about 2 cm. However, such methods are incapable of track-
ing the location of a foot once it leaves the floor surface,
and cannot resolve situations in which the feet overlap onto
a single tile. Moreover, inference of lower body pose from
in-floor force sensor data is challenging due to the loss of
information inherent in this complex mapping. Such limita-
tions have, in part, motivated the present work. In particu-
lar, we adopt the framework of Bayesian filtering in order to
maintain continuity of lower body position estimates in dy-
namic settings, such as walking, where foot-ground contact
is regularly interrupted.

Within this framework, our task remains challenging due
to the high dimensional mapping from an articulated pedes-
trian pose to the observed force sensor values. In particular,
this map is discontinuous for a sensing infrastructure con-
sisting of independent, rigid tiles, as poses that are similar
in nature, i.e. with footprints of similar 2D position and ori-
entation, will lead to drastically different force observations
when tile boundaries are crossed.

3. Tracking Problem and Algorithm

Consider a dynamic system with states xt and observa-
tions zt, both indexed by time. A Bayesian filter proba-
bilistically estimate at time t the state xt by sequentially
updating a belief distribution Bel(xt) over the state space,
defined by Bel(xt) = p(xt|zt, zt−1, zt−2, ...) = p(xt|z1:t).
Assuming the states comprise a Markov process, the Belief
distribution at each subsequent time step can be obtained,
using Bayes’ Theorem, in terms of the belief state at the
prior time step t−1, the assumed motion model p(xt|xt−1),
and the likelihood p(zt|xt) of the newly acquired observa-
tion zt given the state xt:

Bel(xt) ∝ p(zt|xt)
∫
p(xt|xt−1)Bel(xt−1) dxt−1 (1)

Bayesian filters can be distinguished, in part, by the form
of the Belief distribution Bel(xt) that is assumed. Here, we
adopt a Monte-Carlo approach, in which Bel(xt) is repre-
sented by a set of weighted samples, or particles, given by
St = {(xit, wit), i = 1, 2, . . . Ns}. Our method uses the
Sampling-Importance-Resampling (SIR) algorithm [5], de-
scribed in Alg. 1, and schematically illustrated in Fig 2.

For each new observation, SIR re-weighs the set of par-
ticles depending on their likelihood, evolves them in time
using the assumed dynamic model, and updates the particle
set St by resampling based on these weights.

Specifically, the likelihood function L(xt) = p(zt|xt) is
computed in two steps as follows.

1. Using the observation model H, defined in Section 3.1,
that maps states into the observation space, generate
expected observations z∗t = H(xt).

2. Using the similarity measure S(z, z′) = p(z|z′),
defined in Section 3.2, compute the likelihood as
L(xt) ≡ S(z∗t , zt).

As seen in Eq.2, each particle is weighted according to its
likelihood while also considering a prior distribution p(xt).
As described in Section 3.2, the prior distribution p(xt) is
useful for encoding constraints on states xt, thus leading to
an efficient search of the state space.

The attributed weight is then used to resample the parti-
cle set (see Eq. 3). This step distinguishes SIR from SIS
(Sampling Importance Sampling), and is meant to elim-
inate degeneracy of particles; by concentrating on high
weighted particles to create a new uniformly distributed par-
ticle set, the extreme case where most particles have negli-
gible weight is avoided. The opposite extreme, consisting
of a single strong hypothesis, can be avoided by the inclu-
sion of a roughening process. Roughening consists of the
addition of random, zero-mean, normally distributed noise
to all particles after resampling (Eq. 5), to allow for a thor-
ough search of the solution space. Additionally, particles



are propagated forward in time based on the assumed dy-
namic model (see Eq.4), which implicitly defines the mo-
tion probability p(xt|xt−1). Our dynamic model consists
of two processes, accounting for the continuous and dis-
crete aspects of the motion of interest. The dynamic model
and roughening process are defined in detail in Section 3.3.
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Figure 2. The SIR particle filter algorithm.

Algorithm 1 Sampling Importance Resampling
Initialize particles randomly: S0 ∼ N(µS , σS)
while t > 0 do

Observe zt.
for i = 1 to Ns do

Likelihood: p(zt|xit) = S(zt, H(xt))
Weight: wit = p(xit)× p(zt|xit) (2)

end for
for i = 1 to Ns do

Normalize: W =
∑
i w

i
t, w

i
t ←W−1wit

Resample: xit ∼ p(xi∗t |wit), wit+1 = N−1
s (3)

Draw: xit+1 ∼ p(xt+1|xit) (4)
Roughen: xit+1 ← xit+1 + ηt+1, η ∼ N(0, σx)(5)

end for
St+1 = {(xit+1, w

i
t+1)}Ns

i=1

end while

In our system for tracking via in-floor force measure-
ments, the relevant variables consist of:

• Observations zt, consisting of a 12× 12 array of force
values, fi.

• States, xt, describing kinematic lower-body poses, are
19-dimensional vectors: xt = (φl,t, φ̇l,t, φ̇l,t−1, φr,t,
φ̇r,t, φ̇r,t−1, β). They include planar midpoint co-
ordinates u and orientations θ for each foot, where

φl = (ul, θl) and likewise for φr, along with first time
derivatives. The state xt also includes a binary-valued
vector β = (βl, βr), implemented as a quaternary vari-
able, which indicates the foot-floor contact condition
(βi = 1 if there is contact) for the left and right feet.

Figure 3 illustrates this state description within a skeletal
model. The algorithm definition is completed by specifying
the observation model zt = H(xt), the likelihood model
p(zt|xt), and the motion model, p(xt|xt−1).

Figure 3. State description of lower body
poses: xt defines feet and foot-floor contact.

3.1 Observation model

We model expected observations H(xt) for a state xt
by simulating the mechanical forces associated with a pose.
Ignoring shear forces, foot-tile contact results in a normal
pressure distribution p(u), where u = (u, v) are 2D coordi-
nates on the floor. The pressure distribution on a tile is con-
veniently summarized by a contact centroid pc = (uc, F ),
where F =

∫
du p(u) is the net normal force and uc is

the pressure centroid. A normal force with magnitude F ,
applied at uc, would give rise to the same force measure-
ments fi as p(u) [20, 2] (Fig 4). Our observation model
associates a pose xt to a set of contact centroids, pc,j , j =
1, 2, . . . , Nc. One centroid is placed on each tile that a foot
pose is determined to be in contact with (βi > 0), and the
total weight F of the user is partitioned among these cen-
troids. The placement of a contact centroid is determined by
the average position of foot to tile contact. Expected sensor
readings fi are obtained from the static equilibrium equa-
tions for each tile. Each pressure centroid pc yields a con-
tribution fi,c = d−1

i (
∑4
j=0 d

−1
j )−1, where dj = |uc − uj |,

and uj is the sensor location. In this way, we predict ob-
served force values z∗t = {fi,t} for a state xt.



Figure 4. The observation model H(xt) maps
a pose xt (illustrated here as two feet) to a set
of contact centroids (uc). These are then con-
verted to force sensor readings zt = {fi}. Ex-
pected force observations are illustrated as
grids, with each quadrant intensity propor-
tional to corresponding force sensor value
(given in Newtons).

3.2 Likelihood model

The likelihood function L(xt) = p(zt|xt) describes the
probability of observing force values zt given the state xt.
As described above, we use the observation model to gen-
erate expected observations, z∗t = H(xt). The likelihood
function is then defined in terms of a normalized similarity
measure p(zt|xt) = S(z∗t , zt) between true force pattern
observations zt and expected force observations z∗t .

Similarity measure S The similarity measure S(z, z′) =
p(z|z′) models the probability of observing z if the true
observation is z′. Conventional similarity measures make
use of metrics such as Euclidean or Mahalanobis distance
functions. However, since H is a high-dimensional dis-
continuous map from states xt to observations zt, these
measures cannot properly gauge similarity between obser-
vation vectors zt, z∗t = H(xt). Moreover, the force ob-
servations are comparatively sparse, with most values being
zero. As an alternative, we compute pair-wise similarity
between such patterns, based on a measure of their area of
overlap. Specifically, we employ a similarity measure that
has proved useful in tracking via binary image masks [14],
computing S(z∗, z) as the relative area of overlap between
the true and expected 2D pressure distributions,

S(z∗t , zt) =
∩(z∗t , zt)
∪(z∗t , zt)

=
1
Nz

Nz∑
i=1

min(zt(i), z∗t (i))
max(zt(i), z∗t (i))

Fig. 5 illustrates conceptual examples of observations zt,
z∗t as 2D pressure distributions, as well as their intersection
∩(z∗t , zt) and union ∪(z∗t , zt).

Figure 5. 2D pressure distributions for (a) zt,
(b) z∗t , (c) zt∩z∗t , (d) zt∪z∗t . Pressure distribu-
tions are illustrated as grids, with each quad-
rant intensity proportional to corresponding
force sensor value. The intersection (∩) and
union (∪) of force observations are used in
computing similarity S(zt, z∗t ).

We note that the average overlap of these resulting pres-
sure distributions is an effective metric for capturing simi-
larities between force observations as a probability:

S(z, z) = 1
z1 6= z2 ⇒ 0 < S(z1, z2) < 1
S(z1, z2) = S(z2, z1) (6)

Postural constraints The likelihood model is modified to
encode human postural constraints, via a prior distribution
p(xt). The latter is defined to consist of a set of independent
postural priors for human walking, in the form of univariate
Gaussian distributions N(µς , σς), N(µΘ, σΘ) over stance
width ς = ‖ul − ur‖ and relative orientation Θ = |θl − θr|
respectively. The postural prior is introduced as the product
p(xt) = N(ς;µς , σς)N(Θ;µΘ, σΘ). The prior distribution
p(xt) is applied when computing the particle weights from
the likelihood L (see Eq. 2).

3.3 Dynamics Model

We model the movements of the lower body of a walker
via the motion probability p(xt|xt−1). The state xt con-
sists of continuous configuration variables φi and discrete
contact variables βi. We therefore approximate foot motion
in a hybrid (stochastic) framework, incorporating continu-
ous, linear movements of the limb coupled to discrete state
transitions reflecting changes of the foot-floor contact con-
ditions.



Continuous, linear dynamics The state representing the
left or right foot is denoted respectively by a vector φi =
(ui, θi) giving the midpoint and orientation of either the left
(i = l) or right (i = r) foot at time t (Fig. 3. The dynam-
ics used in our algorithm can be described by the following
linear, discrete time system:

φi,t = φi,t−1 + βiΓi(φ̇t−1dt+ η0
t ) (7)

φ̇i,t = βi[αφ̇i,t−1 + (1− α)(φ̇i,t−2 + η1
t−1)] (8)

The parameter βi is the binary contact variable for foot i.
Thus, φi is constant when there is contact (βi = 0) and oth-
erwise drifts, with position and velocity driven by additive
Gaussian noise processes η0

t or η1
t , where η ∼ N(0,Σ). For

efficiency, we parametrize drift via a single noise process,
defining η ≡ η0

t = η1
t dt for all t. The noise covariance Σ

is a 3× 3 diagonal matrix with diagonal entries σu, σv, σθ.
To mimic walking, velocity drift in the direction that the
foot is oriented is assumed to be larger. This non-isotropic
drift is implemented through the factor Γi, a diagonal matrix
with entries (cos θi(γ+

√
1− γ2), sin θi(γ−

√
1− γ2), 1),

where 0 < γ < 1 is a dimensionless scalar defining the
longitudinal bias. α is a dimensionless scalar defining the
velocity noise mixing rate. It approximates the dynamics of
a free foot during walking by means of a saturating linear
drift velocity.

(0,0)

(1,1)

(1,0)(0,1)

Figure 6. Stochastic state transition diagram
approximating stepping motion.

Roughening As presented in (Alg. 1), noise η ∼
N(0, σx) is added to the continuous state components φi
at each SIR step in order to avoid particle degeneracy.

Discrete state transition model The dynamic model in-
cludes discrete transitions from the foot-floor contact states
β = (βl, βr), where β = 0 or 1, via the stochastic pro-
cess, shown in Figure 6. Despite its simplicity, this model
is effective in approximating discrete stepping motion. δ is
an empirically determined probability of no change in con-
tact state β. All remaining transitions are symmetric, with
transition probability 1−δ

2 .

Foot Error (m) Windowed error (m)
Right (no contact) 0.1901 0.1245
Left (no contact) 0.1649 0.0336

Average (no contact) 0.1775 0.0791
Right (contact) 0.2025 0.1058
Left (contact) 0.1406 0.0306

Average (contact) 0.1716 0.0682
Right (all) 0.1982 0.1122
Left (all) 0.1490 0.0316

Average (all) 0.1736 0.0719

Table 1. RMS Position Error

4. Experiment and Results

The system described above was evaluated by measuring
the absolute positions of the feet of pedestrians using data
acquired synchronously via motion capture (Vicon Motion
Systems). Reflective markers were attached to the walk-
ers’ shoes, providing an accurate estimate of 3D foot po-
sitions. Five recordings of walking sequences between 5.7
and 12.4 seconds in length were acquired via the apparatus
described in Sec. 2. Synchronous motion capture and force
data were recorded. Errors were computed based on max-
imum a posteriori (MAP) foot position estimates obtained
from the tracking algorithm.

Figure 7 shows the state estimates and force observations
at four stages of the walking sequence: the initial particle set
has high variance, but is quickly narrowed down to a few
hypotheses which are evolved based on our motion model.
Figure 8 shows the resulting motion trajectories and errors
for the two foot locations, in planar coordinates. Average
RMS error values are reported in Table 1. The experimen-
tal parameters are given in Table 2. Position errors during
foot-floor contact are found to be slightly less on average
than when a foot is not in contact with the floor. Temporal
alignment mismatches were found to have a large effect, so
we also performed a windowed error calculation in which
an acceptable time shift of 10 samples (at 20 Hz) was per-
mitted. This greatly reduced RMS position errors (see Ta-
ble 1), suggesting that system tracking performance may be
most acceptable in situations in which temporal accuracy is
not important. Tracking performance in more temporally
demanding settings might be greatly improved if a better
alignment can be achieved. Video documentation of these
results is provided in the supplementary material, and avail-
able online here.

In addition to position estimates, this system provides
continuous labels identifying the walker’s right and left feet.
During tracking of the sequences used for evaluation, left
and right feet were continuously and coherently identified
with 100% accuracy. The capability of this system to main-
tain and propagate these labels may be useful for appli-

http://www.cim.mcgill.ca/~rishi/video.swf


Figure 7. Force observations and pose estimates at 4 stages of the sample walking sequence. Obser-
vations are shown as 2D pressure distributions, with quadrant intensity proportional to force sensor
readings. Poses are illustrated as green and red lines, corresponding to a top view of left and right
feet estimates respectively, with blue circles corresponding to inferred center of mass.

SIR Algorithm
Number of particles Ns = 200
Initial Noise σS = 4.572 cm
Roughening Position Noise σx = 0.003048 cm/rad

Likelihood Model
Postural prior stance size (µς , σς) = (30.48, 30.48) cm
Postural prior stance angle (µΘ, σΘ) = (0, π/2) rad

Dynamic Model
Additive Position Noise σu,v = 0.3048 cm
Additive Angle Noise σθ = 0.003048 rad
Longitudinal bias γ = 0.9
Velocity mixing rate α = 0.55
Probability of no β change δ = 0.55

Table 2. Experimental parameters

cations including floor-based touch screen user interfaces,
where it may be desirable to assign each foot a different
functional operation, or to render a different response to left
and right foot [20].

5. Conclusion

This paper presented Bayesian filtering techniques to
track the lower body pose of a pedestrian from foot-floor in-
teraction forces acquired via a coarse array of in-floor force
sensors. The system achieves continuous and labeled track-
ing of the lower limbs of a walker via a coarse sensor array,
by combining prior knowledge about the mechanical struc-
ture of the interface and a simple, but consistent, model of
the dynamics of the feet during walking. In the experiment
described above, our system never confused the left and
right feet of the walker, and was able to track the locations
of each with an average resolution on the order of 15 cm,

and with improved resolution when feet are in contact with
the surface. Potential applications of these techniques in-
clude tracking in smart environments in which motion cap-
ture is impractical (due to occlusion or other factors), and to
interaction with distributed, floor-based touch surface inter-
faces for the feet [20, 19].

Despite the promising nature of the results presented
above, further experiments are needed to evaluate the qual-
ity of the tracking. In addition, it is clear that the system
itself can be improved in several respects. A higher-density
sensor network would improve position estimates during
contact, albeit at greater cost. A model for the non-contact
portion of walking movement that is more sophisticated
than the random drift model used in our system could sig-
nificantly improve estimates in foot tracking when a foot is
not in contact with the floor. The incorporation of additional
prior knowledge about the kinematic constraints on lower
limb positions during walking would also be expected to
contribute improvements. In ongoing work, we are explor-
ing the possibilities for optimally fusing information from
in-floor force sensors with motion capture or other video
sensors, in order to resolve data loss due to camera occlu-
sion, or to provide contact forces and timing information
that cannot be accurately estimated from video.
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