
Extended User Control over Multichannel
Content Delivered over the Web
Nicolas Bouillot1, Marcio Tomiyoshi2, and Jeremy R. Cooperstock1

1McGill University, Montreal, QC, Canada

2Universidade de São Paulo, São Paulo, SP, Brasil

Correspondence should be addressed to Nicolas Bouillot (nicolas@cim.mcgill.ca)

ABSTRACT
We describe a server architecture that allows for inclusion of multichannel content in a website, supporting
delivery to the user’s web browser. With conventional content-delivery mechanisms, this is possible only
by implementing browser-specific plug-ins for each platform. Our solution applies not only to any Flash-
capable browser, but additionally supports per-channel volume control by the user while maintaining stream
synchronization during playout. This capability is critical for end-user “mixing” of streamed audio/video
content, which, while motivated by the requirements of our “Open Orchestra” music rehearsal system, is
also useful for other potential applications.

1. INTRODUCTION
Our Open Orchestra project [7] aims to provide a simu-
lated experience of ensemble rehearsal or performance,
from home or music schools, with the convenience and
flexibility of solo study. This builds on the theme of an
immersive orchestral simulator and allows a musician to
practice within the context of a group, as well as to re-
fine his aural perception and interaction with the other
instrumentalists. While traditional rehearsal restricts a
musician to hear the ensemble only from his spatial posi-
tion, preliminary experiments suggest that the capability
of adjusting the mix of the other instruments, for exam-
ple, to resemble the listening perspective of a different
musician or the audience, is pedagogically valuable. To
support this capability within Open Orchestra, the diffe-
rent instrument sections of a piece are recorded on se-
parate channels so that they can be controlled indepen-
dently by the musician during playout.

The Open Orchestra simulator is implemented as a Rich
Internet Application. To achieve the flexibility of solo
study, a lightweight version of the system is intended
to be available to the student at home, but with reduced
computational and network resource requirements rela-
tive to the school version. Open Orchestra includes an
online library of several music pieces, each with audio
and video recorded and pre-processed in order to simu-
late the perspective of different musicians within the en-
semble. For any of these pieces, the student can replace

one of the previously recorded musicians, and practice
with the rest of the ensemble, experiencing the rehearsal
sonically and visually from the same spatial position as
the instrumentalist he is replacing. This is much like
Music-Minus-One, but with the addition of immersive
video and user-controllable multichannel audio. Other
interactivity elements, not presented here, include au-
tomatic or manual page turning of the sheet music and
messaging between instructor and students [7], as well as
student performance feedback through visualization [5].

Audio/video content delivery in web applications, ty-
pically hosted in a browser-controlled environment,
is commonplace. Both Adobe Flash streaming and
HTML5 provide specifications for serving audio and
video to most currently available web browsers. How-
ever, these technologies can only guarantee synchronized
delivery of a single video channel with a stereo pair of
audio channels. Delivery of more than two audio chan-
nels, synchronized both with each other and the accom-
panying video stream(s), to a web client that can control
volume and spatial panning, is beyond the capability of
existing tools. This paper describes our design and im-
plementation of a server architecture overcoming these
limitations, as needed for applications involving deliv-
ery of multichannel audio, possibly accompanied by one
or more video streams, and in particular when requir-
ing interactive control. In this architecture, multichannel
handling is performed at the server side and mixed into

AES 44TH INTERNATIONAL CONFERENCE, San Diego, USA, 2011 November 18–20
1



Bouillot et al. Delivering multichannel content to the web

the appropriate number of channels to be served to web
browsers.

The remainder of this paper is organized as follows. Af-
ter describing in more detail the current status of au-
dio/video delivery to web applications in Section 2, we
propose our server architecture in Section 3. We then ex-
plain the mechanisms for control and monitoring in our
custom streaming engine in Section 4 and conclude with
a summary and plan for future and ongoing work in Sec-
tion 5.

2. AUDIO/VIDEO DELIVERY TO WEB APPLICA-
TIONS

In this section we review several protocols for au-
dio/video streaming, along with their support in web ap-
plications when hosted in a browser-controlled environ-
ment.

2.1. Audio/video streaming protocols

The Internet Engineering Task Force (IETF) has pro-
vided a set of standards for data streaming over IP net-
works. Under these standards, various protocols have
emerged, each targeted to specific tasks. Real-world ap-
plications typically require the use of several such pro-
tocols in parallel. For example, the Real-time Transmis-
sion Protocol (RTP) defines a standardized packet format
for data transport of audio and video [8]. This is specified
in conjunction with the RTP Control Protocol (RTCP),
which provides synchronization information when mul-
tiple streams are transmitted. Another protocol, the Ses-
sion Description Protocol (SDP), provides a format for
describing streaming media initialization parameters [1].
SDP does not deliver media itself, but rather, is used
for negotiation of media type, data format, and asso-
ciated properties between end points. While SDP and
RTP/RTCP support multichannel description, transmis-
sion and synchronization, the practical availability of
multichannel handling is dependant on its support by re-
ceiver software.

A competing protocol, Adobe’s Real Time Messaging
Protocol (RTMP) [2] is used by many popular video
broadcasting websites. RTMP integrates several com-
munication features that operate independently of each
other in the same TCP stream. It supports a single chan-
nel of compressed video in FLV or H.264 [4] format and
a stereo pair of compressed audio channels, for example,
in MP3 or AAC format [3]. In addition, RTMP enables

Remote Procedure Call (RPC), allowing client applica-
tion to call a specific server procedure.

2.2. Reaching the browser

Although the recent HTML5 specification includes a
video element, no standard mechanism is defined for the
handling of multichannel audio, while the only interac-
tive controls provided are for audio volume (one only)
and playhead position. In addition, the sets of supported
video and audio formats are inconsistent across various
browsers. Thus, with HTML5, interactive control over
individual audio channels is not possible and synchro-
nization of multiple channels or multiple media types is
at best uncertain. In addition, RTP support is not im-
posed but depends on browsers and/or the specific plugin
installed.

Despite the limitation in number of channels, the RTMP
protocol, as part of the Adobe Flex development frame-
work, is handled by the Adobe Flash plugin. It is thus
available for almost all desktop computers, operating
systems, and browsers. Importantly, its RPC feature al-
low the client to control specific computation done by the
server, as required for server-based mixing. Moreover,
it provides additional functionality that may be useful
or necessary in media-based applications, such as audio
recording or video display across multiple screens.

3. ARCHITECTURE

To address the previously described shortcomings, we
designed an architecture and implemented its compo-
nents. In this architecture, multichannel audiovisual con-
tent is handled at the server side, mixed in real time and
forwarded as a live video stream with stereo audio to the
clients. Accordingly, the server maintains synchroniza-
tion between channels and supports content processing
operations, such as volume and panning, which can be
controlled by the client in real time.

3.1. Description
The server consists of two components, the custom
streaming engine, which handles multichannel content,
and the RTMP session manager, which maintains ses-
sions with clients, and translates streaming protocols to
the RTMP format. As described below, these communi-
cate with each other by means of popular protocols.

The streaming engine is dedicated to content processing
and stream serving. Its features include play/pause/seek

AES 44TH INTERNATIONAL CONFERENCE, San Diego, USA, 2011 November 18–20

Page 2 of 5



Bouillot et al. Delivering multichannel content to the web

Fig. 1: Server architecture with protocols involved in
end-to end delivery and control of multichannel content

controls in addition to volume and interactive panning
control over individual channels of audio. Internally, it
handles simultaneous reading of multiple files, mixing of
the various audio channels into stereo audio and synchro-
nization with video, AAC encoding of audio at 320 kbps,
stream marshaling, and transmission.

The RTMP session manager re-packs the RTP/RTCP
stream provided by the streaming engine, converting it
to RTMP without the need to re-encode the content. This
component also manages sessions of multiple, possibly
simultaneous, clients. Accordingly, each client is given a
dedicated session, allowing for content serving and con-
trol forwarding to the streaming engine without affect-
ing other client sessions. Our Java implementation of
this component extends the default functionality of the
Wowza Media Server 2.1

A typical session starts with the client requesting a piece
from the session manager, using the RPC provided by
RTMP. This request launches a dedicated streaming en-
gine process with parameters enabling communication
between the two server components. At initialization, it
extracts the streams’ parameters and generates an SDP
file, describing the specific stream configuration, and
makes this available to the second component. This file is
then handled by the protocol converter that converts and
forwards data to the client. Obviously, these steps require
non-trivial set-up, discouraging their repetition each time
the user wants to navigate the stream. Accordingly, this
initialization process is achieved during session creation
and maintained during the entire session. The stream-
ing engine has been implemented in C, largely using the

1http://www.wowzamedia.com/

GStreamer framework [6], allowing for the construction
of graphs of media-handling components.

3.2. Synchronization
Our custom streaming engine is built as a pipeline of

components, building on the GStreamer open source
multimedia framework. To maintain synchronization,
the system clock is used to slave all elements in the
pipeline, including file reading and RTP/RTCP marshal-
ing. The primary task of this clock is to control the
progress of time among the GStreamer elements, po-
tentially running in parallel, in a synchronized manner.
GStreamer derives several times from the system clock
and the playback state, e.g., the running time of the
pipeline and the current position in the media. This
“stream time” is handled by the RTP payloader that de-
termines header timestamps, allowing the marshalling
element to specify in an RTCP packet the synchroniza-
tion information related to the stereo audio stream and
the video stream.

When our protocol translator receives the RTP streams
described in the SDP file, it decodes synchronization in-
formation from RTCP and converts it into the RTMP
format, maintaining a constant temporal relationship be-
tween audio and video at the client.

3.3. Control and feedback

Interactive control over volume, panning of individual
audio channels, and playhead (play, pause, and seek) as
well as feedback of streaming parameters between the
client and streaming engine are coordinated through con-
trol names, associated with particular media content. In
our Open Orchestra project, this information is obtained
by the client during “discovery”, i.e., requesting a list
of available content from the database. When the user
changes a parameter, the client forwards the parameter
name and its new value to the session manager through
the internal RTMP remote procedure call feature. The
session manager then translates these calls to messages
handled by the streaming engine so that they can be ap-
plied, and provides the client with confirmation of suc-
cessful updates.

4. ENABLING CONTROL AND MONITORING IN
OUR STREAMING ENGINE

We now provide further details regarding the control and
monitoring of the GStreamer element.

AES 44TH INTERNATIONAL CONFERENCE, San Diego, USA, 2011 November 18–20

Page 3 of 5



Bouillot et al. Delivering multichannel content to the web

Typical GStreamer-based applications are controlled and
monitored using a custom interface such as a graphical
user interface that operates on properties of the elements
composing the pipeline. For instance, the volume ele-
ment has a boolean property called “mute” that can be
controlled (written) during the pipeline action. These
properties may be readable and/or writable by other el-
ements or by the application itself. Some properties are
also controllable, which allows for automation of para-
meter control using interpolation between the specified
values positioned in time; this is a function available in
most media editing applications.

In the case of a server application, however, control and
monitoring are performed remotely, requiring an entry
point to control such properties. For a streaming engine,
control should be independent of content, since the num-
ber of channels and the processing applied is application
dependant. For instance in Open Orchestra, the number
of audio channels may vary according to the instrumen-
tation of a musical piece.

These requirements motivated us to develop a GStreamer
element that provides remote control and monitoring of
a pipeline, independent of its composing parts. Our ele-
ment supports the following requests:

• set the value of a property for a specified element.
Required arguments are the element instance name,
property name, and the value to apply

• get the value of a property. Required arguments are
the element instance name, property name, the IP
address and the port required for the response

• subscribe to a property. Required arguments are
the same as for the get request. The requester will
be notified of any change applied to the parameter,
even internally. Our implementation allows for mul-
tiple subscribers.

• unsubscribe from a property of a given element.

• automation sets automation for a property of a
given element. Required arguments are the element
instance name, property name, two values and two
dates in units of seconds. The property will progres-
sively ramp by linear interpolation from the initial
value to the target value at the given stream times.

Fig. 2: Our demonstration client embedded in a web
page. This provides interactive control of the playhead
(play/pause) and independent volume control over six
stereo audio channels. The text area is provided here to
observe responses from our streaming engine.

In our server implementation, when the session manager
receives a parameter request from the client, it automa-
tically subscribes to it, if not yet subscribed, and for-
wards notification to the client using the RTMP messag-
ing system. Our current system allows for notification of
streaming engine internal state (play & pause), playhead
position, as well as volume and panning of each channel.

Messaging with our GStreamer element uses Open
Sound Control (OSC) [9] for communication. This en-
ables external monitoring of the sessions using available
command line OSC tools. Because various features of
the streaming engine can be monitored, both at a low
level, such as RTP timestamps, and high level, such as
file locations, this significantly eases debugging tasks.

Client side

Our sample client is shown in Figure 2, illustrating ca-
pabilities required by the Open Orchestra system and
supported by our server. The multichannel content used
here is a Big Band Jazz piece composed of six indepen-
dent audio channels and three video channels, stitched
together to create a panoramic view, all rendered from
the perspective of the bassist. The client implementation
used Flex, allowing it to be embedded in a web page or
compiled for Adobe Air runtime.

AES 44TH INTERNATIONAL CONFERENCE, San Diego, USA, 2011 November 18–20

Page 4 of 5



Bouillot et al. Delivering multichannel content to the web

5. CONCLUSIONS

We presented an architecture allowing for the delivery
of multichannel content to the web. Our server is com-
posed of a custom streaming engine, capable of per-
channel processing, stream synchronization, and remote
monitoring and interactive control. This overcomes the
lack of multichannel support in current web technologies
for delivery of audio/video content. Stream serving to
clients is performed using the Adobe RTMP protocol,
which allows for delivery to a wide variety of desktop
clients, regardless of the operating system and browser.
Importantly, the client software, hosted in a website,
is downloaded during a user’s visit and then launched
in a browser-controlled environment, requiring only the
Flash plugin is additional software.

Current functionality, including playhead control that
maintains stream synchronization, per-channel interac-
tive volume control and panning, are being used in our
Open Orchestra project. Our streaming engine allows for
processing features such as resampling, time-stretching,
and automation of parameter control. It also allows for
live encoding of the content with dynamic bitrate control,
possibly enabling adaptation of the stream bandwidth to
client resources and/or end-to-end network performance.
We expect the architecture to scale easily to support ad-
ditional features as part of our future work.

We have not yet formally evaluated control response
time, which is a critical factor in user experience with
the system, especially for continuous parameters such
as volume adjustment. Fortunately, the latency charac-
teristics of each buffer in the system are generally con-
trollable. However, one must keep in mind the tradeoff
between reliability and delay in tuning buffer and audio
frame sizes.

6. ACKNOWLEDGEMENTS
The authors would like to thank Teresa Liem for her valu-
able work on the manuscript, and Canada’s Advanced
Research and Innovation Network (CANARIE) for fund-
ing of this work, conducted under a Network Enabled
Platforms (NEP-2) program research contract.

7. REFERENCES

[1] M. Handley, V. Jacobson, and C. Perkins. RFC 4566
- SDP: Session description protocol, 2006.

[2] Adobe Systems Incorporated. Real time messaging
protocol chunk stream (version 1.0), 2009.

[3] Information technology – generic coding of moving
pictures and associated audio information – part 7:
Advanced audio coding (AAC). ISO/IEC 13818-7,
2006.

[4] Information technology – coding of audio-visual ob-
jects – part 10: Advanced video coding. ISO/IEC
14496-10, 2009.

[5] Trevor Knight, Nicolas Bouillot, and Jeremy R.
Cooperstock. Visualization feedback for musical en-
semble practice: A case study on phrase articulation
and dynamics. In Conference on Visualization and
Data Analysis (VDA), Burlingame, CA, USA, Jan-
uary 2012. IS&T/SPIE.

[6] Stefan Kost. Writing audio applications using
GStreamer. In Linux Audio Conference, Nether-
lands, 2010.

[7] Adriana Olmos, Nicolas Bouillot, Trevor Knight,
Nordhal Mabire, Josh Redel, and Jeremy R. Coop-
erstock. Open orchestra: a high-fidelity orchestra
simulator. Computer Music Journal, pending publi-
cation.

[8] H. Schulzrinne, S. Casner, R. Frederick, and V. Ja-
cobson. RFC 3550 - RTP: A transport protocol for
real-time applications, 2003.

[9] Matt Wright. Open sound control 1.0 specification.
Published by the Center For New Music and Audio
Technology (CNMAT), UC Berkeley, 2002.

AES 44TH INTERNATIONAL CONFERENCE, San Diego, USA, 2011 November 18–20

Page 5 of 5


