
End-user viewpoint control of live video from a
medical camera array

Jeffrey R. Blum, Haijian Sun, Adriana Olmos, and Jeremy R. Cooperstock
Centre for Intelligent Machines, McGill University, Montreal, Quebec, Canada

Email: {jeffbl | hsun | aolmos | jer}@cim.mcgill.ca

Abstract—The design and implementation of a camera array
for real-time streaming of medical video across a high speed
research network is described. Live video output from the array,
composed of 17 Gigabit Ethernet cameras, must be delivered
in low-latency, simultaneously, to many students at geographi-
cally disparate locations. The students require dynamic control
over their individual viewpoints not only from physical camera
positions, but potentially, of a real-time interpolated view. The
technology used to implement the system, the rationale for its
selection, scalability issues, and potential future improvements,
such as recording and offline playback, are discussed.

I. INTRODUCTION

The camera array described in this article is deployed at
McGill’s Medical Simulation Centre as one of the tools in
a geographically distributed medical teaching application, in
which remote students participate in live cadaveric dissections
and other surgical procedures. In these scenarios, the main
requirements we had to support were live delivery of audio and
video, coping with possible occlusion of one or more cameras
by the instructor’s head or hands, and a dynamically varying
“best vantage point” throughout the procedure. Our system
was designed as part of the Health Services Virtual Organiza-
tion1 (HSVO) project to generate, capture and distribute all of
the physical camera data, with accompanying audio, and offer
the possibility of real-time interpolation of virtual viewpoints.
Access to these capabilities was required simultaneously, at
low latency, by dozens of geographically distributed users,
through an effective user interface as suited to the medical
training context. To meet these goals within reasonable bud-
getary constraints, we prototyped and tested multiple potential
solutions before settling on our final architecture. The entire
solution for capturing, storing and streaming the content is
referred to collectively as the camera array server, which
streams video to multiple client players running remotely.

The remainder of this article is organized as follows. Sec-
tion II summarizes related work, explaining the limitations of
existing camera arrays for our purposes. Section III describes
our architecture in further detail. Section IV presents the
technical issues affecting the user’s experience, including
discussion of rejected designs. Section V concludes the paper.

II. RELATED WORK

Traditionally, most video streaming has been limited to a
single, non-interactive perspective seen by all users, where

1http://www.hsvo.ca

discrete viewpoints are decided by the video producer. Rec-
ognizing these limitations, significant research effort has been
applied to improve the user experience, both by providing
users some control over their individual views, and of smooth
transitions between viewpoints. Efforts to produce higher
quality interpolated viewpoints have included the creation of
a 3D scene model using cameras positioned around a sporting
event [1], [2]. Systems emerging from this work, such as
“Eye Vision”, have been deployed commercially for sporting
events to produce flythroughs of a scene by showing frames
from cameras at intermediate locations between the initial and
final camera positions. Later work used physical camera views
and also interpolated additional viewpoints between physical
cameras. Other systems not only interpolated new viewpoints,
but allowed the end user viewpoint control when playing back
recorded scenes stored on the client computer [3].

The Real-Time Interactive Multi-View Video System [4]
used a set of 32 cameras arranged closely together in an arc to
provide remote users individual viewpoint control. Although it
did not interpolate viewpoints between camera positions, it of-
fered features such as perspective control at a specific “frozen
moment” in time, and a semi-continuous “view sweep.” This
solution, using a specialized client playback engine, was
capable of rendering 640×480 resolution video at 30 frames-
per-second. More generally, the problem of transmitting multi-
perspective video or 3D scenes and allowing users viewpoint
control for exploration of the 3D world, has motivated efforts
such as Free-Viewpoint Television [5]. This effort has included
an extension to the H.264 video standard for combining
multiple camera perspectives into a single encoded stream,
which can then be used on the client side to render new
viewpoints [6].

Last, camera arrays are often constructed for specific needs,
such as for high-speed videography [7]. To reduce data traffic
and storage, their system employed video compression, which
may be integrated into the cameras, or directly coupled to
them. Such compression may have implications for video qual-
ity, especially important if post-processing is necessary. Many
camera arrays tend toward a grid layout of closely spaced
cameras, which is often desirable for the rendering of synthetic
viewpoints or for enhancing imaging performance [8], [9].
This is especially the case when light field rendering tech-
niques are employed [10]. Other camera array architectures
have attempted to provide a generic solution [11], albeit at
potentially prohibitive costs, e.g., requiring all machines to

Component Qty
Basler scA1000-30gc GbE camera 17
Pentax 8.5mm c-mount lens 16
Varifocal Tamron 4-12mm lens for overview 1
Baumer TZG01 ToF camera 1
Recording/encoding servers (Intel Core i7 920) 4
Hauppauge WinTV-HVR 1250 analog capture card 1
Interpolation server with NVidia 265 GPU 1
SMC 8648T 48 port GbE managed TigerSwitch 1
Adobe Flash Media Streaming Server (FMSS) 1
Shure SLX14/85 wireless microphones 2
Shure receiver, mixer, stand microphone 1
Kino Flo Diva-Lite 401 Kit (2 lights) 1

TABLE I
EQUIPMENT LIST

connect through a 10 GbE network.
The systems described above sucessfully cover some, but

not all, of the requirements identified in Section I. In particular,
since this project was not solely a research demonstration
system, but intended for deployment into an active medical
teaching environment for ongoing use, we wanted to create a
system that used as many off-the-shelf components as possible.
This decision not only reduced development and test time, but
also simplified installation and ongoing maintenance. As one
example, the desire to have end users connect to the system
simply by entering a website address in their browser guided
us toward existing video streaming solutions, rather than
using custom compression or streaming protocols, despite the
potential benefits to latency, bandwidth, and video quality they
might have provided. Systems described above that used lossy
compression or low resolution when capturing camera data did
not meet our requirement to capture and record uncompressed
high quality video suitable for a medical environment. Like-
wise, those that required expensive components to achieve a
more general system architecture would make it difficult to
maintain a low enough system cost for practical deployment.
This motivated us to design and implement a new camera array
system architecture, whose physical configuration and logical
structure we discuss next.

III. ARCHITECTURE

As illustrated in Figure 1, the architecture supports the
necessary services of the camera array, which consist of
encoding the raw video data into a format suitable for delivery
to clients, image-based rendering to interpolate new views
where no camera exists, streaming of the video (and audio) to
clients, and although not yet fully implemented, recording of
the video data for later on-demand viewing. The hardware to
support these needs is listed in Table I.

In addition to the 17 viewpoints from the physical cameras,
the system also interpolates virtual viewpoints between the
physical camera positions. Since the cameras are already
placed relatively close together, these interpolated viewpoints
are likely to be most useful in helping users maintain context
while moving their viewpoint around the procedure.

A. Cameras and mounting

Although Firewire cameras are commonly used for machine
vision applications, we opted instead for Gigabit Ethernet
cameras. This offered the benefit of multicast support directly
from the cameras, thereby allowing the video output to be
received simultaneously by multiple machines, which can
each dynamically select the streams they wish to receive. For
our application, this means that raw video can be streamed
directly both to the recording/encoding machines and to the
interpolation machine(s), thus simplifying the architecture.
Moreover, this avoids the need to include an intermediary for
relaying the data to multiple destinations, thereby reducing
video latency. As the system scales, increasing the number of
cameras or adding more machines to process the video can
be as simple as plugging the additional equipment into the
Gigabit Ethernet switch and reconfiguring the software to take
advantage of the new capabilities.

For video interpolation, precise inter-camera synchroniza-
tion is crucial, since motion in the scene would otherwise
induce matching errors, leading to artifacts in the synthesized
view. We found that software synchronization of the Basler
cameras via their Ethernet interface was not sufficiently reli-
able, so we adopted a hardware triggering solution, connecting
all 17 cameras to a custom timing circuit developed in our lab.
This circuit can also trigger an optional time-of-flight (ToF)
camera, which outputs a low-resolution depth map that can be
used by the interpolation algorithm, but is not directly viewed
by the end-user.

In anticipation of the need to capture, digitize, record and
stream a camera feed from a medical device such as an
endoscope, we also included an analog video capture card.

The array’s physical structure consists of two concentric
rings, each holding eight cameras, pointed downward and
slightly inward. The rings are attached solidly to the ceiling to
prevent movement and vibration. This arrangement, shown in
Figure 2, provides useful perspectives of a medical procedure
from a full range of angles, effectively allowing remote
viewers to “walk around” the surgical environment. Screw
mount clamps attach the cameras to the supporting structure
rigidly, since any post-calibration movement can significantly
degrade the quality of interpolation. One additional camera
with a shorter focal length lens is positioned in the center of
the array to provide a wide angle overview of the viewable
scene that aids the user in maintaining context.

B. Servers

The camera array architecture is designed for live streaming
of its output over a high-speed network, as well as future
recording of the live sessions to enable “on-demand” viewing.
Although the camera array is connected to the high speed
CANARIE network, the available bandwidth is still insufficient
to send uncompressed video while supporting more than a
very limited number of users, so a compressed encoding
and streaming solution was required. The steps required for
receiving, recording and encoding the video data are shown

Fig. 1. Camera Array Architecture

Fig. 2. Camera mounting ring, replacing a ceiling tile

in Figure 3 and described in further detail in the remainder of
this section.

Our full 17 camera array requires five servers:

• Three machines each encode the output of five CCD cam-
eras (15 total). Although this service is not yet integrated,
these machines will also record the raw camera data.

• One machine encodes (and will also record) the 16th
CCD camera plus either the wide-angle overview camera
in the center of the ring or an optional analog camera
feed from medical equipment via an analog capture card.
This machine also captures and encodes the associated
audio and streams the encoded video data from all
cameras to clients via Adobe Flash Media Streaming
Server (FMSS). The overview/medical equipment stream
is recorded in compressed VP6 format after encoding,

along with synchronized audio, providing a single video
file for later viewing.

• One machine is responsible for interpolating a synthetic
stream at a desired viewpoint and encoding the result. In
addition, the ToF camera, if included in the array, would
be captured and recorded directly by this machine.

C. Encoding and Streaming

The encoder receives raw Bayer video frames from the
cameras, demosaics the data, and compresses the video for
streaming to clients. Bayer is the preferred format since it
requires half the network bandwidth of already demosaiced
formats such as YUV 4:2:2, and three times less than RGB.
Although we investigated and tested several different encoding
and streaming solutions, we rapidly narrowed our choices
down to Adobe Flash and its open-source competitor, Ogg
Theora. After testing both, we rejected Theora due to high
startup delay, as well as video quality factors and lack of cross-
platform support. Choosing Flash allows us to benefit from its
ability to run on multiple platforms and web browsers, as well
as its ActionScript development environment, which we used
to create a rich client application that receives, decodes, and
manipulates the streamed video. Flash Player uses either VP6
or H.264 formatted video.

Although H.264 offers superior video quality, its computa-
tional requirements for encoding were much higher than VP6.
That said, the more significant factor influencing our choice
between VP6 and H.264 was latency. Although some cameras
encode H.264 video directly on the camera itself, presumably
with very low latency, we require the original uncompressed
camera data for interpolation. Moreover, only for H.264 video,
the Adobe Flash Player buffers a minimum of 64 frames

Fig. 3. Steps for recording, encoding and streaming video from Ethernet cameras.

VP6 H.264
Latency (zero client buffer) 112± 25 ms 1152± 25 ms
Latency (default client buffer) 232± 25 ms 3432± 25 ms
CPU (%) 13% 16-25%

TABLE II
ADOBE FMLE VP6 VS. H.264 ENCODING LATENCY AND TOTAL CPU

LOAD. CONFIGURATION: INTEL CORE I7 920 CPU, WINDOWS XP 32-BIT
OPERATING SYSTEM; DALSA GENIE C1024 ETHERNET CAMERA AT

1024× 768 RESOLUTION, 20 FPS, ENCODED AT 1 MBIT/S.

unless all buffering is turned off.2 This limitation imposes a
choice between (possibly) jittery video with no client buffer,
or approximately two seconds of latency at 30 fps, with higher
latency at lower frame rates, neither of which is desirable for
our system. We measured both CPU load and latency in a
head-to-head performance comparison, shown in Table II, with
encoding implemented in Adobe Flash Media Live Encoder
(FMLE). To determine the latency, we displayed both the
original and the encoded video, streamed through a Wowza
streaming server, on the same monitor, and used a high-speed
Redlake MotionMeter camera to measure the time difference
between an electronic flash in the two views.3 CPU percentage
is approximate since it was estimated manually from the
Windows Task Manager process list. Although H.264 video
quality is generally considered superior to VP6 at any given
bitrate, we are operating on a high-capacity research network
that can easily support an increase of bitrate to compensate,
and thus, VP6 is a significantly better choice, at least when
using FMLE as the encoder. If streaming over a more modest
commodity Internet connection, this decision would need to
be reevaluated. However, even at the lower processor demands
of VP6, the encoding task for 17 or more cameras must be
distributed across multiple encoder machines.

FMLE requires that video data be provided via Microsoft
DirectShow devices. Although Basler provides a DirectShow
device filter that we used for early testing, we needed to
implement a custom version4 that allows us to intercept and
save the raw Bayer video before passing it to FMLE.

Flash Media Streaming Server (FMSS), running on the
machine handling the overview stream, streams all of the
encoded video to clients.

2http://adobe.com/products/flashmediaserver/flashmediaencoder/faq
3Our measurements can only be assumed to be precise within a 50 ms

window, given a frame rate of 20 fps with the cameras we used.
4Based on Vivek N.’s example at http://tmhare.mvps.org/downloads.htm

D. Recording

Although not yet deployed due to issues discussed in this
section, a number of factors motivate capture of uncompressed
data instead of encoded streams. First, we were unsure how
lossy compression would impact the interpolation algorithm,
and second, we can use the original data for higher-quality
offline encoding than would be possible for real-time stream-
ing, e.g., using two-pass encoding techniques, or more CPU
intensive codecs such as H.264.

To record the large quantities of uncompressed camera
data (16 streams between 88-180 Mbps each), we considered
both solid state disks (SSDs) and RAID systems. However,
we opted for a simpler and much less expensive distributed
solution. Since encoding the received video is entirely CPU-
bound, disk I/O capacity on each server remains largely free
for recording, which is not CPU-intensive, so each machine
can be tasked, in parallel, with losslessly recording the video
streams it is simultaneously encoding. Unfortunately, our cur-
rent implementation based on these assumptions drops frames
and reduces the frame rate, and is thus not deployed. Further
work is required to determine why the frames are being
dropped, the results of which will impact the number of disks
required on each encoding/recording machine.

IV. USER EXPERIENCE

The client player, implemented in Adobe Flash and shown
in Figure 4, provides the user’s experience of the camera array
capabilities. It simultaneously displays a small overview video
stream and a larger view of the camera currently selected by
the user. The main interface elements are:

1) the selected viewpoint, dynamically changeable
2) a wide-angle overview of the entire procedure, or a view

from an endoscope or other medical device, depending
on the procedure being viewed

3) the option to expand the player into full screen mode
4) zoom and volume controls

A virtual knob is used to select the desired viewpoint; when
the user releases the mouse controlling the knob, the main
view updates to the new video stream. The design choices
and scenarios around the interface are discussed in a separate
publication [12], and the rest of this section describes the
technical choices that support this user interface.

Fig. 4. Multiple angle viewer, player user interface, with a six camera array.

A. View Switching Architecture

A key consideration of our design was to achieve high
responsiveness and fluidity when users select a new viewpoint.
This entails an efficient switching mechanism between video
streams requested by the client, without introducing significant
delays or video glitches as the client updates to the new
position. One of the most agonizing decisions we faced in
the design of our architecture was the strategy for managing
stream switching by clients as the users change viewpoints.
Although the client is only responsible for decoding the video
it receives, the manner in which the server handles encoding
data from multiple cameras has a significant impact on the end
user’s experience. We now describe the encoding architectures
we considered.

1) Continuous encoding of all cameras: The first design
is to encode all of the camera streams continuously so they
are always available immediately from the RTMP streaming
server. This implementation is potentially much more CPU
intensive than encoding only the subset of streams currently
being viewed by users, but simplifies the architecture and
allows us to expand to many more simultaneous live users
without limiting which views are available to each client.
As such, this is the currently deployed approach. Note that
although all streams are available, the client application only
receives the ones desired, and is responsible for unsubscribing
from any streams no longer needed when the user requests
a new view. Fortunately, dropping one RTMP stream and
subscribing to a new one is very fast, provided that the streams
are already published and available from the streaming server.

The problem, however, is that FMLE restricts the keyframe
rate to a maximum of one per second, which results in a brief
lag when switching streams. During this time, the client waits
for the next available keyframe before commencing display of
the newly selected video stream. The net delay is tolerable, but
precludes the ability to provide clients with a completely fluid
transition between camera views.5 Nonetheless, we favoured
this simple and easily scalable design over the more complex
alternatives described below. Note that avoiding this delay by

5An exception is the interpolated view, discussed in Section IV-B.

having the client receive all possible streams at all times is
undesirable due to the resulting enormous bandwith increase.

2) Dedicated stream per client: To support a faster view
transition from the client perspective, the server could instead
allocate a unique, dedicated RTMP stream to each client,
which the client maintains while it is active. When the user
changes views, the server need only switch the raw video
stream being sent to the DirectShow filter feeding the encoding
pipeline for that particular client. In testing, this resulted in
extremely fast switching between streams, but introduced a
number of other problems, such as redundant encoding if two
users request the same camera view, thus wasting valuable
encoding resources dealing with the same content twice. Most
significantly, this design limits the number of viewers to the
number of streams the system can encode simultaneously,
which is determined by the number and capacity of the
encoding computers. Although this would be acceptable if we
were deploying for a known, small number of simultaneously
connected clients, this is not the case for our system. Another
condition that would motivate further consideration of the
dedicated stream per client option is if encoding costs for the
full array become excessive, as might arise if using H.264
encoding, or in the case of an array containing a significantly
larger number of cameras. Again, however, in this case, the
maximum number of simultaneous clients would be limited
by the number of sustainable encoded streams.

3) Hybrid switching: A hybrid architecture compromises
between a dedicated stream per client and the full encoding
of all cameras. Such a hybrid allows for more simultaneously
connected clients than the number of encoded streams by
limiting the number of camera views available to end users,
while retaining some of the advantages of rapid switching
between views. In this model, each machine is assigned
responsibility for a fixed subset of the cameras, [Ci, Ci+k],
limited by its disk writing and network bandwidth capacities.
This is to permit the continuous recording of raw camera
data for all views, independently of which are being encoded.
In parallel, the machine can encode some dynamic subset of
these cameras, j, j ≤ k + 1, determined by its CPU capacity,
thereby able to serve up to j client requests for different
streams, or more if multiple clients request the same view.
In this architecture, the server tracks which cameras are being
streamed. When the server receives a client request for a view
change from camera Cm to Cn, there are four possibilities:

1) Cm is not currently being encoded, but is assigned to a
server already at full capacity: client request denied.

2) Cm is already being encoded, i.e., it is being viewed by
another client: the client connects to the existing stream,
incurring the client-side RTMP stream switching delay,
as with the architecture from Section IV-A1.

3) Cm is not currently being encoded, but both Cm and Cn

are assigned to the same server, and no other clients are
subscribed to Cm: this is the best case, as that server can
simply switch one of its raw camera feeds from Cm to
Cn without disrupting the existing encoding pipeline for
the requesting client. The view change is then extremely

fast, just as in the architecture of Section IV-A2.
4) Otherwise: this is the worst of the successful cases, as

the system must start the encoding and streaming of Cn,
and the client must also switch to the new RTMP stream.

The requirement to record the raw data for all views,
coupled with limited bandwidth to each encoding machine,
prevents us from allocating cameras dynamically to machines.
This leads to the possibility where the encoding capacity of
one server sits idle, while another server refuses client requests
due to CPU saturation. Without the recording constraint, any
server can encode the data from any camera, although the
time required to unsubscribe from one multicast stream, then
subscribe to the new one, may result in a switching delay
perceived on the client. Of course, with sufficient bandwidth
to each encoding machine, it would be possible to subscribe
to more simultaneous streams, even if they were not being
encoded, reducing this potential switching cost.

Note that if sufficient capacity exists to encode all streams,
rather than only a subset, then this hybrid architecture becomes
an optimized version of the first architecture. The worst case is
that all cameras are encoded and every time a different camera
is selected, this requires switching streams at the client side.
The best case, which is likely with a small number of users,
is very fast switching via stream switching on the server side.

B. Interpolation

As previously discussed, interpolated viewpoints between
camera positions help the user maintain context. In the cur-
rently deployed 17 camera system, a fixed set of five cameras
is used to generate interpolated viewpoints anywhere in the
scene. Since the processing of the interpolated viewpoint
requires more steps than simply encoding and streaming the
physical camera viewpoints, there is an unavoidable additional
delay in the interpolated stream. To decrease this latency, the
interpolation algorithm [13] is implemented in OpenGL and
performed on a Graphics Processing Unit. Although we have
achieved real-time interpolation using this approach, we are
continuing to tackle the problem of added latency in delivering
the raw camera data to the interpolation engine in the required
format, as well as in delivering the interpolated view to the
client. Nonetheless, moving the interpolated virtual camera
position using the client interface is extremely fast, since the
client does not need to switch streams in order to see the new
position. Instead, the interpolated viewpoint is simply updated
on the server upon the client’s request.

C. Audio

All audio associated with the camera array is presently one-
way to the clients via a directional microphone worn by the
instructor. Audio is synchronized and streamed with the wide-
angle overview video during both live and recorded sessions,
since all clients continuously receive this stream. Interaction
among users, e.g., as students at remote sites work together
to solve a medical problem, or between participants and the
instructor, as anticipated when students wish to pose questions,
requires use of a separate videoconferencing system.

V. CONCLUSION AND FUTURE WORK

We have designed and deployed an architecture for an array
of 17 Ethernet cameras, streaming live video of a medical
scenario over a high-speed network. The system allows each
client to select a physical camera position or an interpolated
view between the physical camera positions. The live system
has been demonstrated in a medical environment, streaming
800 × 600 resolution video at 24 frames per second to sites
throughout Canada, as well as Cork, Ireland, during a teaching
session involving students and instructors at multiple locations.
Future work includes implementing recording of the raw video
and using it to create on-demand sessions, as well as exploring
hardware compression to reduce cost.

ACKNOWLEDGMENT

This work was funded by Canada’s Advanced Research and
Innovation Network (CANARIE) under a Network Enabled
Platforms research contract, as part of the HSVO project.
Members of the Shared Reality Environment lab at McGill
University and the staff at the Arnold and Blema Steinberg
Medical Simulation Centre at McGill University provided
tremendous support when testing and deploying the system.

REFERENCES

[1] O. Grau, A. Hilton, J. Kilner, G. Miller, and J. Starck, “A free-viewpoint
video system for visualization of sport scenes,” SMPTE Motion Imaging
J., vol. 116, no. 5-6, pp. 213–219, 2007.

[2] T. Kanade, P. Rander, S. Vedula, and H. Saito, “Virtualized reality:
Digitizing a 3D time-varying event as is and in real time,” in Mixed
Reality, Merging Real and Virtual Worlds, H. T. Yuichi Ohta, Ed.
Springer-Verlag, 1999, pp. 41–57.

[3] N. Inamoto and H. Saito, “Fly-through viewpoint video system for multi-
view soccer movie using viewpoint interpolation,” in Visual Communi-
cations and Image Processing, vol. 5150. SPIE, 2003, pp. 1143–1151.

[4] J.-G. Lou, H. Cai, and J. Li, “A real-time interactive multi-view
video system,” in Proc. 13th annual ACM international conference on
Multimedia. New York: ACM, 2005, pp. 161–170.

[5] M. Tanimoto, “Free-viewpoint television,” in Image and Geometry
Processing for 3-D Cinematography, ser. Geometry and Computing,
R. Ronfard and G. Taubin, Eds. Springer, 2010, vol. 5, pp. 53–76.

[6] Y. Chen, Y.-K. Wang, K. Ugur, M. M. Hannuksela, J. Lainema, and
M. Gabbouj, “The emerging MVC standard for 3D video services,”
EURASIP J ADV SIG PR, vol. 2009, pp. 1–13, 2009.

[7] B. Wilburn, N. Joshi, V. Vaish, M. Levoy, and M. Horowitz, “High-
speed videography using a dense camera array,” in Computer Vision
and Pattern Recognition. IEEE, 2004, pp. 294–301.

[8] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth,
A. Adams, M. Horowitz, and M. Levoy, “High performance imaging
using large camera arrays,” ACM Trans. Graph., vol. 24, pp. 765–776,
2005.

[9] Y. Taguchi, K. Takahashi, and T. Naemura, “Real-time all-in-focus
video-based rendering using a network camera array,” in 3DTV Con-
ference: The True Vision - Capture, Transmission and Display of 3D
Video, 2008, 2008, pp. 241 –244.

[10] J. C. Yang, M. Everett, C. Buehler, and L. McMillan, “A real-time
distributed light field camera,” in Proceedings of the 13th Eurographics
workshop on Rendering, ser. EGRW ’02. Aire-la-Ville, Switzerland,
Switzerland: Eurographics Association, 2002, pp. 77–86.

[11] C. Lei and Y. Yang, “Design and implementation of a cluster based
smart camera array application framework,” in Second ACM/IEEE Intl.
Conf on Distributed Smart Cameras, 2008, pp. 1–10.

[12] A. Olmos, K. Lachapelle, and J. R. Cooperstock, “Multiple angle
viewer for remote medical training,” in Second ACM Int. Workshop on
Multimedia Technologies for Distance Learning. ACM, 2010.

[13] S. Pelletier and J. R. Cooperstock, “Real-time free viewpoint video from
a range sensor and color cameras,” Machine Vision and Applications (in
review).

