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ABSTRACT 
Many variables have been shown to impact whether a vibra­
tion stimulus will be perceived. We present a user study that 
takes into account not only previously investigated predictors 
such as vibration intensity and duration along with the age of 
the person receiving the stimulus, but also the amount of mo­
tion, as measured by an accelerometer, at the site of vibration 
immediately preceding the stimulus. This is a more specific 
measure than in previous studies showing an effect on per­
ception due to gross conditions such as walking. We show 
that a logistic regression model including prior acceleration 
is significantly better at predicting vibration perception than 
a model including only vibration intensity, duration and par­
ticipant age. In addition to the overall regression, we discuss 
individual participant differences and measures of classifica­
tion performance for real-world applications. Our expecta­
tion is that haptic interface designers will be able to use such 
results to design better vibrations that are perceivable under 
the user’s current activity conditions, without being annoy­
ingly loud or jarring, eventually approaching “perceptually 
equivalent” feedback independent of motion. 
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feedback; accelerometer 
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INTRODUCTION 
Haptic feedback on mobile devices is intended to provide sub­
tle notifications while on-the-go, and is thus an increasingly 
important part of mobile, and especially wearable, devices. 
We observe that it is easy to notice a smartwatch vibration 
while sitting in a conference room, yet while riding a bike on 
a bumpy path, the same stimulus can go unnoticed. Indeed, 
as discussed in Related Work, coarse activity measures such 
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as moving from a laboratory environment to outdoors or clas­
sifying whether the person is walking, impacts perception. 
Thus, we hypothesized that motion, as measured by an ac­
celerometer just before a vibration stimulus is delivered, may 
offer a significant improvement in determining whether the 
stimulus will be perceived. This paper describes an experi­
ment that uses a smartwatch to measure motion just before 
administering different vibration stimuli throughout the day, 
and records whether the user notices them. We only used sen­
sors built into current smartwatches, eschewing external sen­
sors and mechanisms. Although this limits the sensing capa­
bilities, the results can be deployed immediately for practical 
notification and haptic communication applications. 

If prior acceleration is indeed predictive, it would deliver ad­
ditional benefits beyond the main feature of more subtle, yet 
still effective vibration feedback regardless of activity level. 
First, since the MEMS accelerometer in the Pebble smart-
watch (ST LIS3DH) consumes about .036 mW, while even 
a small eccentric rotating mass (ERM) vibration motor (e.g., 
Precision Microdrives 310-004) consumes about 42 mW, we 
expect that using the accelerometer to reduce vibration du­
ration or intensity will also provide a net power savings. In 
addition, it would also enable the device to wait a brief pe­
riod until there is less motion before administering a weaker 
stimulus, further reducing power consumption and potentially 
allowing the use of smaller, less expensive, or less power-
intensive actuators. If motion does not drop below a level 
where the stimulus would likely be felt, even with the actu­
ator driven at maximum intensity, the system could fall back 
to audible or other methods to ensure an important notifica­
tion is perceived. Although such tradeoffs are not necessarily 
as critical in larger products such as tablets or smartphones, 
wearable devices must aggressively minimize size and power 
consumption in order to be comfortable, stylish, and usable. 

RELATED WORK 
Creating noticeable but not overwhelming vibrations has been 
a long-standing topic of interest. Researchers at Nokia stud­
ied how vibration duration changes subjective perception of 
the stimulus, finding that durations between 50-200 ms are 
perceptible from a phone in a front trouser pocket in a labora­
tory setting, with ambient sound blocked by headphones play­
ing pink noise [6]. At 500 ms duration, vibrations were re­
ported as “too strong” much more frequently than at 200 ms. 
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Studies in human and animal perception indicate that active 
movement can lead to a partial suppression, or “gating”, of 
the transmission of tactile inputs [12]. For example, in con­
trast to the stationary participants in the Nokia study, Martins-
son reported that increasing the duration of single pulse vi­
brations showed clear perception benefits up to 800 ms while 
walking [9], and Qian et al. likewise found that 800 ms dura­
tion haptic icons performed better for ambulatory users than 
those at 200 ms [13]. Baek et al. found that the optimal 
frequency of vibration for best perception was higher while 
walking rather than when stationary [2]. Karuei et al. studied 
vibrations of 500 ms duration at 12 points on the body, in­
cluding the wrist, and found that, “Walking significantly re­
duces odds of detecting a vibration,” but that visual workload 
had no, “apparent effect on vibration detection” [7]. Addi­
tional variables that impact sensitivity to a vibration stimulus 
include amplitude [3], sound [13] and temperature [5]. 

Similar to the method presented here, Pasquero et al. had par­
ticipants note when they felt vibrations, rendered by a 30 mm 
radius piezoelectric actuator in a custom-built watch, dur­
ing their normal activities over a two-hour period in a work­
place setting [11]. Although the participants achieved very 
high detection rates (97%, with durations ranging from 256 
to 1280 ms), it is unclear how well these results apply to 
more standard vibration actuators, and in contexts outside of 
a workplace. The study did not measure device motion. 

A comparison of vibration perception via a haptic belt, with 
participants splitting their time between a laboratory and 
walking in an urban environment, was conducted by Morri­
son et al. [10]. They found a, “lowering of sensitivity in the 
field (with distraction).” Although conducted in an urban set­
ting, this study was short-term (both lab and field conditions 
in less than one hour per participant), and did not measure 
motion specifically before each vibration. 

Andersen et al. tested various predictors of vibration percep­
tion and showed that logistic regression is a good model for 
such a perception study. They found that age, stimulus inten­
sity and “situation” were significant predictors, with “situa­
tion” showing a decrease in perception when moving from 
a laboratory environment to an outdoor setting, and older 
participants demonstrating a greater drop in perception when 
switching to the outdoor context. They conclude as follows: 

“for real life implementation the situation cannot be so 
pre-determined but has to be estimated semi or fully au­
tomatically to adapt vibration intensity to the optimal 
level. . . various sensors monitoring biological and mo­
tion information. . . could be sampled with fusion to give 
an estimate of the current situation.” [1] 

The work presented in this paper does exactly this using a 
sensor already present in a commercial smartwatch to gauge 
the user’s current state not at a gross level, but precisely at the 
location of stimulus and just before the vibration is triggered. 
We also use the same form of analysis, logistic regression, to 
extend their results in the direction they suggest. 

In summary, this paper presents a considerable practical im­
provement over the cited work, including that of Andersen 

et al., whose coarse activity “situation” was not measured by 
a device. Even dynamically categorizing context using sen­
sors (e.g., “walking”) would likely miss brief lulls in which a 
stimulus would be perceptible. Conversely, a resting person’s 
transient wrist motion could mask a stimulus presented at just 
the wrong time. In contrast, our primary contribution is show­
ing that prior acceleration, a physically and temporally prox­
imate, easy-to-measure factor, significantly improves predic­
tions of whether a stimulus will be perceived. In addition to 
the less jarring notifications and potential power savings al­
ready described, this work advances the field as, to our knowl­
edge, the first demonstration of a technique that is practically 
implementable on an inexpensive device without explicit cat­
egorization of the user’s activity, and is much more responsive 
to transient changes in activity than classification approaches, 
requiring sensor data less than 1 s before the stimulus to make 
a decision. Further, the “in the wild” nature of the study illus­
trates that the effect is evident despite confounding variables 
such as ambient noise and participant distraction. 

METHOD 
We recruited seven volunteer participants (5 male, 2 female, 
ages 19-47, median=24), each of whom wore an original 
model Pebble smartwatch, containing a pancake ERM vibra­
tion motor, for at least three days, not necessarily consecu­
tively. The watch was placed on the bare wrist where the par­
ticipant normally wore a watch. For the 4 participants who 
did not normally wear a watch, it was placed on the wrist 
where they indicated they would prefer to wear one, which 
was the non-dominant hand in all cases. The strap was made 
only as tight as was comfortable, with the experimenter veri­
fying that it was not so loose as to be uncoupled, and partici­
pants were instructed to always use the same clasp position. 

When the participant noticed a vibration, they were to press 
the lower-right button on the smartwatch to indicate they had 
perceived the stimulus. For safety reasons, participants were 
instructed not to push the button immediately after feeling 
a stimulus if it was not safe to do so. In such a case, they 
could instead push the upper-right button to indicate they had 
perceived the vibration but were unable to press the button 
immediately. If the timestamp of a vibration was followed 
within 8 s by a lower button press, or within 60 s by an upper 
(“late”) button press, the stimulus was considered perceived, 
and otherwise missed. In practice, the “late” button was only 
used six times during the entire experiment to indicate a per­
ceived vibration after 8 s. Participants were typically quick to 
push the lower right button (mean delay=2.8 s, sd=1.8 s). The 
Pebble application displayed text beside each button as a re­
minder of which button to push. When a button was pushed, a 
message appeared briefly in the middle of the watch’s screen 
as confirmation (Figure 1). 

The watch vibrated with different stimuli every three to ten 
minutes. Although there is prior work evaluating variables 
such as vibration intensity and pause duration in patterns, we 
focused on only a single pulse so as to determine whether 
there is indeed a predictive effect in the simplest case. A pi­
lot experiment with eight participants found that stimuli at or 
above 300 ms duration and 4/10 of maximum intensity were 
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(a) Pebble watch	 (b) UI just after pressing 
lower-right side button 

Figure 1: Pebble smartwatch. 

perceived the vast majority of the time regardless of prior ac­
celeration, so we chose smaller values for this experiment. In­
tensity was varied via pulse width modulation (PWM) pulsing 
with a 10 ms duty cycle1 at values of either 2 (vibrating 2 ms 
out of every 10 ms) or 4. Vibration duration was either 100 ms 
or 200 ms, making four total vibration duration/strength con­
ditions, referred to as 100/2, 200/2, 100/4, 200/4 throughout 
this paper. The four combinations were administered in ran­
dom order, then re-randomized for subsequent stimuli. 

Prior to each stimulus, three-axis accelerometer readings 
were acquired at 50 Hz, with a range of ±4 g. The accelerom­
eter data was filtered using a basic high-pass filter with a 0.1 s 
time constant2 to remove gravity and keep only dynamic ac­
celeration. We note there is research into how best to filter 
and use accelerometer data to measure physical activity lev­
els [17], but since we are examining the more specific issue 
of motion relevant to vibration perception, it is unclear how 
relevant such results are to our use case. The magnitude of the 
three-axis dynamic acceleration vector was averaged over all 
the samples recorded in the 500 ms before the stimulus was 
initiated, which we refer to as “prior acceleration”. In an ear­
lier pilot experiment, we found that most acceleration values 
were very low since participants were largely sedentary. We 
considered using activities such as sports, but wanted the re­
sults to reflect mostly normal, everyday motions. Instead, the 
Pebble application monitored the current acceleration level 
in order to bias trials toward higher acceleration values, as 
follows. Each time a stimulus was scheduled to begin, the 
application started to look for a mean dynamic acceleration 
value above 70 milligs over the prior 0.1 s, and dropped that 
threshold to zero linearly over a 30 s period, triggering a vi­
bration when the threshold was exceeded. Thus, a vibration 
would always trigger by the end of the 30 s window, but the 
application would “catch” higher activity levels to get a better 
distribution of prior acceleration values. In order to avoid the 
participant learning that a sudden motion would trigger a vi­
bration due to this algorithm, it immediately vibrated in 25% 
of trials, regardless of the initial acceleration level. 

1Code available at: https://github.com/jeffbl/pebble 
2Based on https://developer.android.com/guide/ 
topics/sensors/sensors_motion.html 

Because the watch can only store a limited amount of data in 
memory, each participant also carried an Android smartphone 
or tablet that received and stored the data until it could be 
downloaded. Some data was lost due to issues with the Peb­
ble data logging system, which appeared to be triggered when 
the watch was too far from the logging device for an extended 
period. In these cases, this required extending the time with 
the device to gather additional data. One participant reported 
falling asleep while the application was running, so this time 
period (approx. 8pm - 7am) was excluded from analysis. In 
the end, we obtained at least 50 vibrations per participant per 
condition, and a total of 3221 vibration stimuli across all par­
ticipants and conditions. Specific counts are summarized in 
Table 1. Most notably, p001 ran for a longer period than the 
other participants, and thus accounts for roughly a third of the 
total data points. At the other extreme, p003 has the fewest 
data points, largely due to the data logging issue. 

RESULTS 
As advocated by Andersen et al. [1], we use logistic regres­
sion, a statistical method for analyzing binary outcomes based 
on one or more predictor variables, to estimate the probability 
of a stimulus being perceived. Data analysis was via R [14], 
using its glm function with family=binomial. In this section, 
we first show a link between prior acceleration and perception 
on an individual level. We then provide quantitative results of 
a logistic regression model incorporating pooled data across 
all participants. Last, we measure the performance of a clas­
sifier based on these logistic regression results. 

Logistic regression results 
To get a better feel for the data we first explore a subset of 
the results in more detail. For the benefit of clarity, we focus 
initially on a single participant p001 in the 100/4 condition, 
shown in Figure 2a. The dots in the plot represent the percent­
age of stimuli perceived when the data is binned in 25 millig 
prior acceleration increments, purely for visualization, since 
plotting individual stimuli results in an unintelligible smear at 
the binomial 0 (missed) and 1 (perceived) probability levels. 

First, we note that the data is heavily biased toward lower 
prior acceleration values (larger dots, representing more vi­
brations pooled into the 25 millig bin), since participants were 
not always active. We have a robust number of samples up 
to approximately 200 milligs, after which it rapidly becomes 
sparse, meaning that we are less sure of the perception rates 
at higher prior accelerations. As we will see, perception falls 
off at less than 200 milligs of prior acceleration, especially for 
the lower stimulus levels. Next, we note that the maximum 
perception probability occurs at lower prior acceleration val­
ues, i.e., when the wrist is nearly motionless, with perception 
falling off as prior acceleration increases. 

Figure 2b shows individual logistic regression curves at the 
weakest stimulus level (100/2). In contrast to the 100/4 con­
dition shown in Figure 2a, we see a much faster falloff in 
perception for p001 (now orange), due to the weaker stimu­
lus. Perception rates for some participants do not even rise 
to 75%, indicating the stimulus was not always perceptible 
even with minimal wrist motion. Note individual differences, 
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duration (ms)/intensity 
100/2 200/2 100/4 200/4 

age vibes %felt vibes %felt vibes %felt vibes %felt 
p004 19 70 57% 74 70% 71 70% 70 87% 
p007 19 104 55% 105 75% 105 70% 105 90% 
p005 21 113 34% 110 83% 113 79% 110 97% 
p001 24 255 29% 255 71% 253 68% 252 91% 
p006 25 90 28% 88 40% 89 55% 88 74% 
p003 30 51 41% 52 85% 50 78% 53 92% 
p002 47 123 15% 123 38% 125 36% 124 69% 

Table 1: Summary per participant, sorted by age: total vibrations and percentage perceived for each duration/intensity condition. 

(a) Participant p001, 100/4 condition. (b) Regression per participant for 100/2 condition. 

Figure 2: Perception data and regressions on a per-participant basis. 

such as p007 being substantially more sensitive at higher prior 
acceleration levels. At the other extreme, p006 and p002 
show a faster decline in perception. Except for p007, only a 
small proportion of vibrations are perceived above a 200 mil­
lig threshold. Note that although there is significant inter-
participant variation when looking only at duration and inten­
sity as predictors, the overall regression results take into ac­
count participant age, which is not apparent from Figure 2b. 

Although not shown here, the plot for the 200/4 condition 
shows much more limited value to the prediction simply be­
cause a much higher percentage (86%) of the vibrations are 
perceived overall. Above this stimulus strength, we expect 
based on an earlier pilot test that practically all vibrations will 
be perceived, at least in the observed acceleration ranges. 

We now build an overall logistic regression model using 
pooled data from all participants and conditions, including 
four predictor variables: intensity, duration, age, and prior 
acceleration. Table 2 summarizes the logistic regression re­
sults. As expected based on the Related Work above, inten­
sity and duration are significant predictors, as demonstrated 
through the small p-values computed from a χ2 likelihood ra­
tio test (marked L.R.T. p > χ2 in Table 2), generated using 
R’s anova function with test=Chisq, which is equivalent to 
test=LRT when performing logistic regression. Since Ander­
sen et al. showed that age is also important, we included it in 
our model, and confirmed that it is indeed a significant predic­

tor, although it is important to note that our participants were 
in a more restricted age range (19-47 vs. 7-79 years) [1]. 
Most importantly for the purposes of the present study, we 
found that prior acceleration is also a significant predictor. 

A separate test was performed to evaluate the final residual 
deviance of the overall model, which is a measure of the over­
all model fit to the data. Even if this final fit turned out to be 
poor, we would conclude, based on the above analysis, that 
prior acceleration does significantly improve the prediction, 
but that there are likely unaccounted for variables that would 
be necessary to achieve a good overall fit to the observed data. 
For this test, as explained by Cook et al., “...the null hypoth­
esis states that the logistic regression model provides an ad­
equate fit to the data.” [4]. Since the chance that a χ2 with 
3216 degrees of freedom exceeds the final residual deviance 
of 3259 is 0.294 ( p > 0.05), we cannot reject this null hypoth­
esis, and thus conclude that not only is prior acceleration an 
important contribution to the model, but also that the model 
containing all four predictors has a reasonably good fit to the 
data. This residual deviance should not be surprising given 
that the experiment was carried out in the field, with uncon­
trolled variables such as ambient sound levels and participant 
distraction, both of which are likely sources of variation. 

Classification performance 
A practical application would likely use the logistic regres­
sion model to classify whether a vibration with given parame­
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Residual Deviance L.R.T. 
Coeff (β) Std.Err Deviance Residual Df. Reduction p > χ2 

Intercept (β0) -1.4625 0.2139 4263 3220 
duration 0.0154 0.0009 4012 3219 251 < 0.0001 
intensity 0.7386 0.0454 3766 3218 246 < 0.0001 

age -0.0616 0.0047 3602 3217 164 < 0.0001 
prior accel -0.0072 0.0004 3259 3216 344 < 0.0001 

Table 2: Logistic regression results for all data, showing prior acceleration as a predictor significantly reduces residual deviance 
(χ2 Likelihood Ratio Test p < 0.05), as do vibration intensity/duration and age. 

ters would be perceived. We evaluate this with 10-fold cross-
validation (via the caret package [8]), building mean ROC 
curves using ROCR [16], based on the classification perfor­
mance of the ten resulting logistic regression models. 

Figure 3 shows the mean ROC curves (vertically averaged) 
for a model containing only duration+intensity+age, then 
adding prior acceleration. The mean area under the curve 
(AUC) for the first model is 0.757, while that of the model 
containing prior acceleration rises to 0.817, indicating that 
the latter is indeed superior. DeLong’s test, via the pROC li­
brary [15], on combined ROC curves from the 10-fold cross-
validation indicates p < .0001, so we reject the hypothesis 
that the true difference in AUC is zero. Starting at the left of 
the plot, we see that the performance of both models tracks 
closely together until reaching a true positive rate (TPR) of 
around 0.30. After this point, the model performance di­
verges, with the model including prior acceleration maintain­
ing a lower false positive rate as its TPR climbs. 

As noted earlier, there was a considerable difference in the 
number of data points gathered for each participant. Since 
we were concerned that the results may be overly optimistic 
due to, for example, approximately a third of the data coming 
from p001 alone, we carried out two additional 10-fold cross-
validation runs. The first upsampled the data for each par­
ticipant to the same total number of samples as p001, while 
the second downsampled each participant to the same total 
number as p003. The mean AUC values across the 10 folds 
were not much different from those generated using the un­
balanced data set, as shown in Table 3. Most importantly, 
the difference between the AUC values (“Difference” in the 
table) for the two models is roughly consistent. 

Mean AUC 
dur+int+age +prior accel Difference 

unbalanced 0.757 0.817 0.060 
upsampled 0.740 0.811 0.071 

downsampled 0.728 0.795 0.067 

Table 3: Mean AUC ROC results for 10-fold cross-validation 
on unbalanced (pooled), upsampled and downsampled data. 

FUTURE WORK 
First, we would like to extend our work to encompass ambient 
sound levels, which also impact whether vibrations are suc­
cessfully perceived [13]. Further improvements in the anal­
ysis of data already acquired should also be pursued. For 

ROC comparison of models
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Figure 3: ROC curve comparison of classification perfor­
mance for models without (“dur+int+age”) and with (“+prior 
accel”) prior acceleration as a predictor. Error bars represent 
1.96 × the standard error of the models generated by 10-fold 
cross-validation, providing a 95% confidence interval. 

example, averaging of overall acceleration magnitudes across 
all three axes may mask effects related to the direction of mo­
tion, e.g., motion aligned with gravity, or in/out of alignment 
with the plane of the vibration motor may be important con­
siderations. Likewise, some of the parameters chosen in our 
study were selected as “educated guesses” but were not op­
timized, including the choice of averaging 500 ms of accel­
eration prior to each vibration as a predictor. Ideas include 
changing the amount of time, using an averaging method bi­
ased toward later (more proximate to the stimulus) acceler­
ation samples, and using squared acceleration values to give 
more weight to large acceleration impulses. Other factors, 
such as the tightness of the watch coupling to the wrist, could 
potentially be measured by the accelerometer since one would 
expect the vibration to be more damped as band tightness in­
creases, providing a rough measure of the coupling. 
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Other regressors or machine learning techniques could poten­
tially improve our classification results, but we believe these 
will be best pursued when moving to a more inclusive model 
encompassing more devices and data from a broader partici­
pant pool, and when targeting a specific application. 

Despite efforts to bias the data collection to periods where the 
participant had greater wrist acceleration prior to the stimu­
lus, the data was still heavily skewed in favour of low accel­
eration values. We expect that further efforts to gather data at 
these higher acceleration levels would refine the curves. 

CONCLUSION 
The duration and intensity of a vibration stimulus given by 
a smartwatch can be insufficient to reliably predict whether 
a vibration will be perceived. We hypothesized that measur­
ing the amount of watch motion via the accelerometer before 
the onset of vibration stimulus would prove useful in making 
better predictions. Through our experiment, we found a sig­
nificant predictive correlation between prior acceleration of 
the wrist and whether a vibration stimulus is perceived across 
seven participants. This effect was very clear and significant 
at the lower stimulus levels, becoming less important when a 
participant perceived the stimulus most of the time regardless 
of prior acceleration. Such predictions are useful in practice 
since our algorithm is easily implementable on even low-end 
wearable devices available today, and would allow more re­
strained and potentially more power efficient haptic feedback 
to be used, rather than the “one size fits all” approach preva­
lent today. We hope that these results can be refined for prior 
acceleration, as well as extended to other variables such as 
sound and attention, to create “perceptually constant” haptic 
stimuli, opening new possibilities in haptic interfaces. 
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