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ABSTRACT

A new, efficient image compression algorithm based on a rotating, overlapping, hi­

erarchical representation (ROHR) is presented. This algorithm first decomposes the

spatial image data into a hierarchical coordinate space, composed of interconnected

nodes. The surprise of each node represents the entropy of the corresponding im­

age area, and determines its significance in reconstructing the image. Surprises are

ordered and transmitted in decreasing order of magnitude with a bucket encoding

method, yielding an embedded code. ROHR allows for either lossless compression, or

for termination of the encoding or decoding at any point to meet a target compression

ratio or distortion metric. In the latter, image reconstruction from the transmitted

data occurs without the introduction of artifacts that would indicate where the trun­

cation occurred. Moreover, the procedures allow for real-time video encoding or

decoding operations on color images of 256 x 192 pixels on current PC architectures,

considerably faster than equivalent software JPEG codees.
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RESUME

Cette thése présente un nouvel algorithme efficace de compreSSIOn basé sur une

représentation hiérarchique composée de noeuds pivotés et superposés (Rotating,

Overlapping, Hierarchical Representation - ROHR.) Cet algorithme décompose d'abord

les données spatiales d'une image en un espace de coordonnées hiérarchiques composé

de noeuds interconnectés. La surprise de chaque noeud représente l'entropie de la

région correspondante de l'image et détermine son importance dans la reconstruc­

tion de l'image. Les surprises sont ordonnées et transmises par ordre de grandeur

décroissant avec une méthode d'encodage par casier, produisant un code intégré.

ROHR permet une compression sans perte ou l'interruption de l'encodage ou du

décodage à n'importe quel point pour respecter une mesure de distorsion ou un taux

de compression désiré. Dans ce dernier cas, l'image est reconstruite à partir des

données transmises sans l'introduction d'artefacts qui indiqueraient où la troncation

s'est produite. De plus, les procédures permettent l'encodage ou le décodage vidéo

en temps réel d'images de 256 x 192 pixels sur des architectures PC actuelles con­

sidérablement plus rapidement que les codees logiciels JPEG équivalents.
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CHAPTER 1

Introduction

Image compression is an intensively studied research area in signal and image pro­

cessing. It plays an important role in applications such as television transmission and

image databases. Images have been used increasingly as a supplement to traditional

communication media such as text, or in many cases, taken their places. However,

uncompressed images usually require considerable storage capacity and transmission

bandwidth. Despite rapid progress in storage density, processor speeds, and digi­

tal communication system performance, data storage capacity and data transmission

bandwidth remain bottlenecks for many applications.

Image compression is the process of converting an input image into another data

stream of smaller size by removing the redundancy from the original image. The

generated data stream i8 either a file or bit stream over communication lines. Com­

pression should preserve the information in the original image, where information

theory presents a mathematical definition of information and redundancy, and pro­

vides basic theories for image compression as weIl.



1.1 INFORMATION THEORY

1. Information Theory

Information is the knowledge of a specifie event or situation; it is a collection of facts

or data. Quantifying information is based on the observation that the information

content of a message is equivalent to the amount of surprise in a message. Suppose an

event E will OCCliI with probability 0.01, and will not occur with probability 0.99. We

expect that E will not occur, but if it does, we will be greatly surprised and receive a

lot of information. The following definition relates the information of an event to its

probability [1]:

Let E be sorne event that occurs with probability prE). If we are told

that event E has occurred, then we say we have received

1
I(E) = log2 P(E)

units of information.

The choice of the logarithm to the base 2 indicates that this amount of information

could be expressed as I(E) binary bits, that is, I(E) yes or no questions. We note,

also, that if P(E) = ~, then I(E) = 1 bit. That is, we obtain one bit of information

when one of two equally likely alternatives is specified.

Now consider a sequence of symbols from a fixed finite alphabet S = {SI, S2, ... , Sn}'

We assume that symbol Si occurs with probability Pi' The sum of probabilities equals

unity: Pl + P2+ ... + Pn = 1. If symbol Si occurs, we obtain information:

The average amount of information per symbol is:

n 1
H(S) = L. Pdog2 P.

i=l 2

2



1.2 WHY IMAGE COMPRESSION WORKS

H(S) is caHed the entropy of a symbol. In the special case where aH the symbols are

equiprobable, Pl = P2 = ... = Pn = P = ~' the entropy achieves the maximum value:

n

H(S)max = 2:. P l092P = l092 n
i=l

This fact is used to define the redundancy R in the data, as the difference between a

symbol set's largest possible entropy and its actual entropy:

n n

R = -l092(1/P) - (- 2:. Pi l092 Pi) = -l092n + 2:. Pi l092 Pi
i=l i=l

Generally speaking, data can be compressed if it is redundant.

2. Why Image Compression Works

A digital image is an array of pixels. A common characteristic of natural images is

that neighboring pixels are correlated and therefore contain redundant information.

"If we select a pixel in the image at random, there is a good chance that its neighbors

will have the same color or very similar colors." [2] The central task of image com­

pression is therefore to remove the redundancy from the original data and create a

less correlated representation of the image. In general, two types of redundancy can

be identified:

1. Spatial Redundancy or correlation between neighboring pixel val-

ues.

2. Spectral Redundancy or correlation between different color planes

or spectral bands.

Image compression research aims to reduce the number of bits needed to represent an

image by removing the spatial and spectral redundancies as much as possible. This

suggests the general law of data compression: assign short codes to common events

3



1.3 APPROACHES TO IMAGE COMPRESSION

(or symbols) and long codes to rare events.

3. Approaches to Image Compression

According to whether or not distortion is introduced into the reconstructed images,

image compression methods are classified as lossy or lossless. Lossless compression

methods ensure that aU the information in the original image is preserved after com­

pression, thus maintaining the full quality of the originaL Lossy methods, however,

discard sorne information during compression, typically high frequency features to

which the human eye is insensitive. Lossy compression often results in much smaller

file sizes than lossless compression.

A further classification of compression methods divides them into statistical, predic­

tive and transform techniques.

Statistical methods are straightforward when we consider the general law of data

compression: assign short codes to common symbols and long codes to rare ones.

The compression quality depends on the accuracy of the statistical modeL Variable­

size codes are assigned to certain symbols according to their frequencies in the input

stream. Huffman Coding is an example of such methods. Under certain statistical

models, it can generate an optimal coding. Other commonly used statistical com­

pression schemes are Shannon-Fano Coding and Arithmetic Coding.

Predictive methods use the information already coded to predict future values and

encode the difference. When applied to the image or spatial domain, it is relatively

simple to implement and is readily adapted to local image characteristics. Differential

Pulse Code Modulation (DPCM) is an example of predictive coding.

4



1.4 THESIS ROADMAP

Transform methods are powerful tools in image compression. They first transform

the image from its spatial domain representation to a different representation using

sorne well-known mapping and then code the transformed coefficients. Compression is

achieved in two ways. First, the transform coefficients are usually smaller, on average,

than the original spatial values because the high frequency components tend to be of

small magnitudes. Lossy compression, therefore, can be achieved by quantizing these

coefficients. Second, the transform coefficients are generally less correlated with each

other than the original image pixels, and can thus be encoded more compactly. Trans­

form methods often provide better compression than predictive methods, although

at the expense of greater computational requirements. Commonly used transforms

are the Fourier Transform (FT), Discrete Cosine Transform (DCT) and the Wavelet

Transform (WT).

Other image compression approaches include the Run Length Encoding (RLE), the

Gray Codes, and the Vector Quantization (VQ). Practical image compression algo­

rithms often comprise a combination of basic methods in order to achieve better

compression than a single method alone. An example is JPEG (sequential mode).

The original image is first organized into groups of 8 x 8 pixels called data units. The

DCT transform is then applied to each data unit to create an 8 x 8 block of frequency

coefficients. Each coefficient is quantized and statistically coded.

4. Thesis Roadmap

This thesis presents a new image compression algorithm, whose overall structure is

shown in Figure 1.1. The original image is first decomposed into a hierarchical coor­

dinate space, which is composed of interconnected nodes. The surprise of each node

represents the entropy of the corresponding image portion, and determines its signifi­

canee in reconstructing the image. Sinee most images are highly spatially redundant,

5



1.4 THESIS ROADMAP

Encoder

------- ------ .....

: Communication
1 network

Decoder

FIGURE 1.1. Structure of our image compression algorithm

many nodes have trivial surprises. Compression, therefore, is achieved by neglect­

ing nodes with smaU surprises. One important characteristic of this method is that

when the encoding or the decoding is prematurely terminated, the image can still be

reconstructed from the remaining data, without introduction of artifacts that would

indicate where the truncation occurred.

The image decomposition step is discussed in Chapter 2. We begin with a simple

example and present the one-dimensional decomposition. Its relationship to wavelet

transform is discussed. We then continue with the two-dimensional case and present

two decomposition schemes - pyramid decomposition and quincunx decomposition.

6



1.4 THESIS ROADMAP

In Chapter 3 and Chapter 4, we discuss the encoding methods in detaiL We intro­

duce the philosophy of Embedded Coding, and describe some successful examples. The

bucket is our implementation of embedded coding. We discuss the prioritization prin­

ciples, bucket labeling and coalescing, and efficient encoding of the bucket contents.

In Chapter 5, we expand the approach to color image compression. Experimental re­

sults are presented and discussed in Chapter 6. Finally, in Chapter 7, we summarize

the improvements obtained by the proposed algorithm and discuss future work.

7



CHAPTER 2

Image Decomposition

A natural image is highly spatially correlated, with most of the area typically rep­

resenting spatial trend [4], i.e. uniform or slightly varied regions. However, the

anomalies, such as edges or object boundaries, which take on perceptual significance,

contribute little to the numerical energy of the image as a whole. Image compression

is achieved by detecting these anomalies and allocating more bits for coding them

than the trends.

Sorne traditional frequency transforms, such as the Fourier Transform, are used for

this purpose. They transform the whole image into the frequency domain, in which

the trends are expressed as low frequency components and anomalies as high frequency

components. This type of transformation is computationally expensive. Moreover,

since it expresses the image as a sum of periodic waves that are well localized in

the frequency domain but not in the time domain, they cannot represent the local

properties of an image efficiently.

Sorne other traditional image compression algorithms, such as JPEG, first decom­

pose the image into a number of macroblocks, and then compute the DCT over these,

such that each coefficients corresponds to a fixed sized area and a fixed frequency

bandwidth, where the bandwidth and spatial extent are effectively the same for all



2.1 ONE-DIMENSIONAL DECOMPOSITION

coefficients in the representation. This method is also known as windowed frequency

analysis. However, at low bit rate, blocking artifacts at the macroblock level are often

evident due to quantization effects.

In order to achieve an efficient compression at both high and low bit rates, we need a

framework that gives the anomalies and trends the same weighting in the analysis. In

addition, it should analyze the images at different seales and provide a multiresolution

representation in which sorne ofthe coefficients represent long data lags correspond­

ing to a narrow band, low frequency range, and sorne of the coefficients represent

short data lags corresponding to a wide band, high frequency range. A representative

of this multiresolution transform is the Wavelet Transform, which achieves excellent

results at low bit rate compression. In addition, sorne spatial image decomposition

schemes can also achieve good multiresolution transformation.

In this chapter, we discuss a new spatial decomposition method - the rotating, over­

lapping, hierarchical representation (ROHR). It is effective for image compression

and easy to implement. The process of decomposition is presented in detail, and its

properties are discussed. We also compare it to the wavelet transform and investigate

their relationship.

1. One-dimensional Decomposition

The decomposition of a one-dimensional array into a hierarchical network is shown

in Figure 2.1. The input image signal contains 16 individual pixels, numbered from

16 to 31. They constitute the bottom layer of the hierarchical structure. Layer 4

is constructed from layer 5 by combining every three nodes together. For example,

node 8 is constructed by combining nodes 16, 17 and 18, and is considered as their

parent, sinee it represents the image area covered by its three children. Node 9 is

constructed from nodes 18, 19 and 20. Nodes 8 and 9 share a common child, node

9



2.1 ONE-DIMENSIONAL DECOMPOSITION

18, as the two image areas they represent overlap. Similarly, other nodes layer 4

are constructed from three consecutive children nodes in layer 5, and share children

with their Immediate neighbors in the same layer. In sorne cases, nodes falling at the

right border, for example node 15 in this figure, may have only two children.

This process is repeated until the top layer is created, at which point we obtain

a hierarchical structure caUed the coordinate space. Each node in this coordinate

space is related to a piece of image area, with its scale, or resolution, depending on

the layer in which it resides. Nodes in the bottom layer, which correspond to real

image pixels, are the highest resolution block. Their parents have larger scales and

lower resolutions. The first layer consists of a single uniform area, with the size of

the entire image. This coordinate space, therefore, is regarded as a multiresolution

representation of the original image.

- - - - - - - - - - - - - - - - - - - - Layer 1

FIGURE 2.1. One-dimensional decomposition into a coordinate space

We designate the nodes without children as leaf nodes, and those having two or

three children as non-leaf nodes. The top node, caUed TOot, is the entry point to the

coordinate space. There are two kinds of typical nodes in the space. One is like node

10, which has two parents (nodes 4 and 5) and three children (nodes 20, 21 and 22).

We caU it an N-node. The other is like node 11, which has one parent (node 5) and

three children (nodes 22, 23 and 24). Since it is the middle child of its parent, we

caU it an M-node. If we traverse the coordinate space top down and number the

nodes in breadth-first sequence, as shown in Figure 2.1, the structure of N-nodes and

10



(a) N-node

2.1 üNE-DIMENSIONAL DECOMPOSITION

(h) M-node

FIGURE 2.2. Structure of N-nodes and M-nodes

M-nodes, including the index number relationships, can be summarized in Figure 2.2.

Note that these index number relationships are also suitable for the root and leaf

nodes.

Each node in the coordinate space is associated with a (value, surprise) paIr. The

value, denoted as val, indicates the trend within the corresponding image area. It

should be the representative of all its children, therefore similar to an average. We

define the value as the weighted sum of its children's values:

1 1
val(n) = 2val(left child) + val(middle child) + 2val(right child) (2.1)

For those nodes having only two children, the value is defined as:

val(n) = val(left child) + val(right child)

The value of a leaf node is the intensity of the corresponding image pixel.

The surprise of a node, on the other hand, refiects anomalies. Consider an N-node;

if it resides in a uniform, or nearly uniform region, its two parents probably have

the same, or nearly the same values. Henee, its value can be weIl predicted from its

parents' values. On the contrary, if it happens to cross an edge or an object boundary,

its two parents' values refiect the different trends on the two sides of the edge. As

a result, there is a significant differenee between the node's value and the predicted

value from its two parents. Therefore, we measure image details by evaluating how

accurately a node's value can be predicted from its parents'. This is called the surprise

11



2.1 ONE-DIMENSIONAL DECOMPOSITION

of anode, which is defined as:

surprise(n) = val(n) - (val(left parent) + val(right parent))j4 (2.2)

For those nodes having only two children, the surprise is defined as:

surprise(n) = val(n) - val(parent)j2

The surprise of an M-node does not contain any information about anomalies because

the image area it represents is completely covered by its parent's. Ignoring surprises of

M-nodes does not influence the extraction of anomalies, so we only compute surprises

of N-nodes as the multiresolutional details of the original image. Moreover, values of

M-nodes are redundant because they can be inferred completely from N-nodes' values.

Because of general image spatial correlation in images, the surprises, which represent

possible anomalies, are decorrelated and often small. Consequently, an arbitrary level

of compression can be achieved by neglecting surprises below a given threshold during

the encoding.

The decomposition method described above can be implemented by the following al­

gorithm:

Copy the image data to the bottom layer of the coordinate space

Build the coordinate space from bottom up, computing the value of

every node according to Equation 2.1.

Traverse the coordinate space from top down, computing the sur­

prise of every N-node (except the root) according to Equation 2.2

The decomposition is reversible, that is, we can reconstruct the entire coordinate space

from the root's value and surprises of N-nodes. Given the surprise of an N-node n

12



2.2 PROPERTIES OF THE IMAGE DECOMPOSITION

and its parents' values, we can recover the value of n as:

val(n) = surprise(n) + (val(left parent) + val(right parent))j4 (2.3)

Whereas the value of an M-node m is recovered by:

1 1
val(m) = val(parent) - 2val(left neighbour) - 2val(right neighbour) (2.4)

The reconstruction process can be implemented with the following algorithm:

Copy the value of root.

layer L of- 0

while L is not the bottom layer do:

Lof-L+1

Compute values of N-nodes in L according to Equation 2.3

Compute values of M-nodes in L according to Equation 2.4

Values in the reconstructed bottom layer correspond to the recovered image.

2. P:rope:rties of the Image Decomposition

This decomposition is independent of image content. The depth and breath of coor­

dinate space is determined only by the size of the image. If there are k nodes in one

layer, then there are

{

k
2

k-l
T

if k is even

if k is odd

k
"" -

2

nodes in its parent layer. Supposing the original image contains p pixels, the depth

of the coordinate space is llo92P + 1J, where lxJ indicates the largest integer not

13



2.3 WAVELET TRANSFüRM INTERPRETATION

exceeding x, and the total number of nodes in the coordinate space is:

111
p + 21p + 22P + 23P + ..,+ 1 ~ 2 x P

If we ignore aH the M-nodes as they contain no additional information, the number

of nodes encoded is p, equal to the original image size.

From Equation 2.1 we also notice that the parent's value is statistically twice those

of its children. Since the image area covered by the parent is twice those covered by

its children, the value of a node, in sorne sense, is ranked by the size of the image

portion it represents. As a consequence, the surprises in the entire coordinate space

are statistically grouped with respect to their layers. In other words, if we consider

the surprise in a certain layer as a random variable, its expected value is higher than

those in any of its descendant layers. This property is important for the encoder

design.

Another interesting and appealing property of this decomposition is that it produces

integer values and surprises. Moreover, since the decomposition and reconstruction

are symmetric, every value can be completely recovered during reconstruction. Rence

we can avoid any deviation caused by floating point arithmetic operations and obtain

a simple and lossless recovery calculation.

3. Wavelet Transforrn Interpretation

3.1. Wavelet Transform. The continuous wavelet transform (CWT) of a

function f(t) involves a mother wavelet 'l/J(t). The mother wavelet must be Integrable

and square Integrable. The CWT of a square integrable function f(t) is defined as:

W(a, b) = l: f(t) 'l/Ja,b(t) dt

14



2.3 WAVELET TRANSFORM INTERPRETATION

where

1 t - b
7/Ja,b (t) = yIfaf7/J(-a-)

For any a, 7/Ja,b(t) is a copy of 'ljJa,o shifted b units along the time axis. Thus, b is a

translation parameter and a is a scaling, or dilation parameter. Values a > 1 stretch

the wavelet, while 0 < a < 1 shrink it.

The CWT is best thought of as an array of numbers that are inner products of f(t)

and 7/Ja,b(t), which is a series of mother wavelets with different translation and scaling

parameters. The result W(a, b) shows the match between f(t) and the wavelet at

different frequencies and at different tîmes. Wavelet transform, therefore, provides

us the analysis of f(t) at different scales. When we change the scale of the wavelet,

we obtain new information about the function being analyzed. The quality of the

transform depends on the choice of scale factors and time shifts, as weIl as the choice

of wavelet.

The inverse CWT is defined by:

1 100 100

1f(t) = C -00 -00 ~W(a, b)7/Ja,b(t) da db

where the quantity C is defined as:

-100

Iw(w)1 2

c- Il dw
-00 w,

and W(w) is the Fourier transform of 7/J (t) :

W(w) = 1: 7/J(t)e- iwt dt

The discrete wavelet transform is used in practical applications. Consider a 1-D

discrete image signal x[n], where n is the pixel index. The wavelet transform expresses
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2.3 WAVELET TRANSFüRM INTERPRETATION

x[n] as a sum of basis functions fi[n] weighted by the coefficients Pi:

x[n] = I:pdi[n]
i

The coefficients Pi can be derived by taking the inner product of the image with a set

of wavelets 9dn]:

Pi = I: 9i [n]x [n]
n

This may be expressed in matrix notation as follows [8]: Let the image signal be a

column vector x. Define the kernel matrix to be composed of columns fi:

F = fa fI 12

Then we have:

x=Fp

where p is the column vector of coefficients. These coefficients are found by mul­

tiplying the image with the transform matrix G, where G is composed of rows 9i.

Thus

p=Gx

and

x=FGx

sa we have:
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2.3 WAVELET TRAN8FORM INTERPRETATION

We are particularly interested in the situation where the basis functions can be parti­

tioned into a few classes, where the functions within a given class are shifted versions

of each other. That is, the kernel matrix has the form:

fa

F=
fa

Then the transform matrix G has the form:

9a

9b

9a

G = 9b

9a

9b

As an example, consider the Daubechies D4. It is based on four coefficients Cl, C2, Cs

and C4. The transform matrix Gis:

Cl C2 C3 C4 0 0 0

C4 -C3 C2 -Cl 0 0 0

0 0 Cl C2 c3 C4 0

0 0 C4 -C3 C2 -Cl 0

G=

0 0 0 Cl C2 C3 C4

0 0 0 C4 -C3 C2 -Cl

C3 C4 0 0 0 Cl C2

C2 -Cl 0 0 0 C4 -C3

17



2.3 WAVELET TRANSFORM INTERPRETATION

When this matrix is applied to the column vector x, its top row generates the

weighted sum SI = Cl Xl +C2X2 + C3X3 +C4X4, its third row generates the weighted sum

S2 = CIX3 + C2X4 + C3XS + C4X6, and the other odd-numbered rows generate similar

weighted sums Si. Each of Si is called a smooth coefficient, and together they are

called an L smoothing filter.

In a similar manner, the second row of the matrix generates dl = C4XI - C3X2 +C2X3 ­

CIX4, and the other even-numbered rows generate similar inner products. Each di

is called a detail coefficient and together they are called an H fiUer. The H fiUer

generates small values when the image data Xi are correlated. Land H are called

Quadrature Mirror Filters (QMF).

The discrete wavelet transform of an image can therefore be viewed as passing the

original image through a QMF that consists of a pair of low-pass (L) and high-pass

(H) filters. If G is an n x n matrix, it generates i smooth coefficients Si and i detail

coefficients di'

An alternate description of this wavelet transform is shown in Figure 2.3. The image

signal x(n) is fed into the fiUers one by one, and each filter computes and outputs

one number y(n) in response to x(n). The number of response is therefore double

the number of inputs. To correct this situation, each filter is followed by a downsam­

pling process. One downsampling throws away the odd-numbered outputs, the other

throws away the even ones. When they are synthesized, they are first upsampled,

and passed through the inverse filters, and finally combined to form the signal .T'(n).

This process is also called a subband transform.

Note that the transform matrix G in the D4 example shows how to generate the

finest resolution coefficients. The scaling parameter of the wavelet transform can be

illustrated in Figure 2.4. The outputs of the low-pass filter Lare normally passed

18



2.3 WAVELET TRAN8FORM INTERPRETATION

x'(n)

FIGURE 2.3. A two-channel fllter bank

through the analysis fiUer several tirnes, creating shorter and shorter outputs. Since

each node of this tree produces half the number of outputs as its predecessor, the

tree is called a logarithmic tree [2]. Each level of the tree corresponds to twice the

frequency of the preceding level, so this tree is also called a multiresolution tree.

Successive filtering through the tree separates lower and lower frequencies.

x(n)

FIGURE 2.4. Illustration of the scaling parameter

3.2. Relevance to Image Decomposition. Consider the one-dimensional

decomposition example in Figure 2.1. The input image data vector x consists of the

layer 5. When we build up its parent layer, we compute the surprises in layer 5 by

Equation 2.2 and values in layer 4 by Equation 2.1. These two equations can be

described by a more general model, as shown in Figure 2.5.

FIGURE 2.5. A general model for calculating the values and surprises
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2.3 WAVELET TRANSFORM INTERPRETATION

For the value calculation, we have:

p

q

and for surprise, we have:

1 l
-a+ b+-n
2 2
1 1
-n+ c+-d
2 2

surprise(n)
1

n--(p+q)
4
1 1 1 1 1

n - - ( -a + b+ -n + -n + c + -d)
4 2 2 2 2

1 1 3 1 1
--a - -b + -n - -c - -d

8 4 4 4 8

Effectively, calculating the values is equivalent to passing the data through a 5-tap

low-pass fllter L:

1 1
{0'2,1'2'0}

whereas calculating surprises is equivalent to passing the data through a 5-tap high­

pass fllter H:

By ignoring the middle children, half the number of values and half the number of

surprises are generated. This process, therefore, is a 5-tap kernel wavelet transform,

which splits the frequency band by a low-pass and a high-pass fllter. The transform

matrix for 16-point image data (including the border cases) is:
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2.3 WAVELET TRAN8FORM INTERPRETATION

3 l _1 0 0 0 0 04 -2 4

l 1 l 0 0 0 0 02 2

l l 3 l l 0 0 08 -4 4 -4 -8

0 0 l 1 l 0 0 02 2

0 0 l l 3 l l 08 4 4 -4 8

Wl6Xl6 = 0 0 0 0 l 1 l 02 2

0 0 l _1 3 l _1 08 4 4 -4 8

0 0 0 0 l 1 l 02 2"

0 0 0 0 l l 3 l
8 -4 4 8

0 0 0 0 0 0 l l
2 2

The outputs of the low-pass filters are transformed several times, so the wavelet

kernels are cascaded hierarchically to create a multiscale pyramid, i.e. the coordinate

space. Also, by numbering this pyramid from top down, surprises are always put

on the right half of the output and the values on the left half. Thus the process of

building the coordinate space can be described by Figure 2.6.

LH4 H3 H2 Hl
~---~v~------~,

1 j! !! t ! 1

o 1 2 3 4 5 6 7 8 9 10 Il 12 13 14 15

L: low-pass H: high-pass

FIGURE 2.6. Band-splitting description of I-D decomposition. The labels,
Hl throught H4 correspond to high-pass subbands of decreasing spatial fre­
quency, respectively.

Further investigation of this wavelet transform indicates that (1) the transform kernels

are not orthonormal and (2) the high-pass kernel has a zero De gain. As noted by

Adelson et al [8], "In transform based on QMF kernels, the basis set is orthonormal

and so the transform functions are identical to the basis functions. But orthogonality

is not strictly required for image compression. It is only necessary that the transform
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2.4 TWO-DIMENSIONAL DECOMPOSITION

be invertible." our case, the matrix of W 16 x 16 is non-singular, and the inverse

matrix is:

1 1 0 0 0 0 0 02

1 Q 1 1 0 0 0 0"2 8 4" -g-

O 1 1 1 0 0 0 02 2

0 _l 1 1 1 1 0 08 4" 4 4" -8
W-1

16x16 =

0 0 0 1 1 1 0 0-"2 -"2

0 0 0 1 1 3 1 1
8 4 4 4 8

0 0 0 0 0 1 1 -1
2

0 0 0 0 0 1 1 7
8 4 4"

Both W and W-l are extremely simple and easy to compute. Many multiplications

can be simply implemented by shifts and adds. It is thus more computationaHy

efficient than most other wavelet transforms.

4. Two-dimensional Decomposition

In order to decompose two-dimensional images into several subbands, the most straight­

forward approach is to apply one-dimensional transforms to rows and columns sepa­

rately, in a pyramid decomposition, illustrated in Figure 2.7. The first step calculates

the values and surprises for aH the rows. This creates values in the left half of the

image and surprises in the right half. The second step calculates values and surprises

for aIl the columns, which creates values in the top-left quadrant and surprises in the

remaining three quadrants. These two steps generate a new layer in the coordinate

space, in which each node has nine children, and shares one child with each of its

four immediate neighbors. This pair of steps is repeated on the top-Ieft subquadrant,

until the top layer is created. Pyramid decomposition results in an average subband

(LL), as weIl as horizontal (LH), vertical (HL) and diagonal (HH) details.
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2.4 TWO-DIMENSIONAL DECOMPOSITION

LL LH
------liIi- 1------\-----1Original Image L H

HL HH

LH

HL HH

t""" t"""
t""" t""" LHt""" ::I:

HL HH

J
FIGURE 2.7. Pyramid decomposition (taken from [2])

Original Image ------liIi- LI Hl
L2

Hl
H2

L4
:--- H3

HL!. Hl
H2

L3 H3
Hl

H2
J

FIGURE 2.8. Quincunx decomposition (taken from [2])

Another commonly used method is quincunx decomposiiion, shown in Figure 2.8. It

computes the wavelet transform by alternating between rows and columns. It first

computes the transform for aH the rows, and generates a low-pass subband LI in

the left half and high-pass subband Hl in the right half. Each subband images

has a vertical resolution twice that of the horizontal resolution. A new layer whose

nodes have three children is generated in the coordinate space, just as for the one­

dimensional case. The wavelet transform is then applied to the low-pass subband

LI only, which generates another pair of subbands L2 and H2. This process is

repeated until the top layer lS created. Compared with the pyramid decomposition,

this method lS more efficient and computationally simple, so it is chosen for our
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2.4 TWO-DIMENSIONAL DECOMPOSITION

algorithm. However, quincunx decomposition results in fewer subbands, which may

lead to reconstructed images with lower visual quality. As a supplement, Figure 2.9

illustrates the decomposition steps from a spatial perspective.

Layer i

Layer i-1

Layer i-2

FIGURE 2.9. Two-dimensional decomposition

The numbering of the surprises is performed in such a manner that no child node is

scanned before Hs parent. Figure 2.10 shows the numberings for the pyramid and the

quincunx decompositions. In the former case, the scan begins at the lowest frequency

subband, denoted as LLn, and scans subbands H Ln, LHn and H Hn successively,

then moves on to scale n - 1, and so on. In the latter case, the scan begins at Ln,

progresses to H n , and then moves on to the next scale. Note that each coefficient

within a given subband is scanned before any coefficient in the next subband.
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(a)Pyramid decomposition (b)Quincunx decampasition

FIGURE 2.10. Scanning arder of the subbands

5. Summary

This chapter surveyed a new methad, ROHR, ta decampase an image inta a hier­

archical coordinate space. Each node in this structure is associated with a (value,

surprise) pair, which represent the trends and anomalies of the original image at dif­

ferent scales. The purpose of this decomposition is ta eliminate spatial correlation

within the image. The generated surprises, from which the coordinate space will be

recovered, are encoded in the next step.

We further demonstrated that ROHR is a computationally efficient wavelet trans­

form, involving a simple transform matrix.

The two-dimensional decomposition is an extension of the one-dimensional case. Two

methods were concerned, with the quincunx approach favored due to its simplicity

and consistency with the one-dimensional case.
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CHAPTER 3

Bucket Coding

In this and the following chapters, we discuss methods to encode the surprises and

generate the compressed bitstream, as suitable for transmission over a communication

network.

Generally speaking, encoding can proceed either sequentially or progressively. Se­

quential coding, as its name implies, scans the image and encodes the data by rows.

During the decoding, the resolution of the recovered image is a constant and later

data only adds more area. This coding mode, however, is not suitable for transmission

and real-time decoding because users would need to wait for the entire data stream

in order to view the full image.

Progressive coding, on the contrary, compresses and encodes the image in multiple

passes so that more important information is encoded first. In the decoder, later

data adds progressively greater resolution to an already full-sized image, allowing for

incremental refinement. This mode IS attractive because a user viewing the image

can normally recognize most of the image features after only 10-15% of it has been

decoded. Moreover, users can effectively control the bit rate. For these reasons, most

modern image compression methods are either progressive or optionally so.



3.1 EMBEDDED CODING

Embedded coding is a kind of progressive coding that provides the useful property

of allowing truncation of the encoding or decoding at an arbitrary point while still

displaying the full image, albeit at less than full quality. In this chapter, we present

a novel method, bucket coding, which exhibits this desirable property. We first focus

on how to sort the data and implement the truncatable progressive coding. The fol­

lowing chapter will discuss methods for the efficient coding of this data.

1. Embedded Coding

A strict definition of embedded coding is:

If two files produced by the encoder have size M and N bits, with

M > N, then the file of size N is identical to the first N bits of the

file of size M.

In his EZW algorithm [4], Shapiro implements progressive coding in an embedded

fashion, so that "aH encodings of the same image at lower bit rates are embedded in

the beginning of the bit stream for the target bit rate, effectively, the bits are ordered

in importance." As discussed earlier, this allows for termination of either the encod­

ing or decoding "at any point, thereby allowing a target rate or distortion metric to

be met exactly."

EZW first uses a QMF wavelet transform to obtain a multiresolution representation

of the original image. It then provides a compact sign~ficance map, which indicates

the positions of significant coefficients. The embedded coding is then achieved by

ordering the wavelet coefficients according to their precision magnitudes, scaies and

spatial locations, and transmitting the most significant bits of coefficients first. Ze­

rotrees allow the prediction of insignificant coefficients across multiple scales.
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3.2 THE BUCKET DATA STRUCTURE

Figure 3.1 [6] illustrates the basic idea of transmitting the most significant bits first.

Each column contains the bits of a number c. The bits are ordered from top down.

The top two rows represent the sign bit and the most significant bit of each number,

respectively, while the bottom row is the least significant bit. We assume that the

significance of a number is determined merely by its magnitude. The coding method

adopted by EZW and 8PIHT [6] (an extension of EZ\V) is to transmit the most

significant bits first, that is, the M8B (bit 5) of aH numbers, then the second most

significant bit (bit 4) of aH numbers, and so on, until the LSB. Although the practical

coding methods of EZW and SPIHT are in fact much more complicated and efficient,

in which only the bits corresponding to the arrow sweeps need to be transmitted,

the basic logic is similar. When the encoding or decoding is prematurely terminated,

aIl the data can be approximated by as many of the most significant bits that were

decoded, without producing artifacts that would indicate where the termination oc­

curred.

sign 6

MSB 5

4

3

2

1

LSB 0

s s s s s s s s s s s

I I 0 0 0 0 0 0 0 0 0

- r- I I 0 0 0 0 0 0 0

I I I 0 0 0 0

I I I I

FIGURE 3.1. Simple example of embedded coding taken from SPIHT

2. The Bucket Data Structure

The coding method used in our algorithm is based on the same philosophy as EZW

and SPIHT. A major objective in progressive transmission is to select the most im­

portant information, which yields the largest distortion reduction, to be transmitted

first. Recalling the image decomposition phase in Chapter 2, the surprise of anode
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3.2 THE BUCKET DATA STRUCTURE

indicates its significance in the reconstruction of the original image. Larger surprise

contains more information about the image. By transmitting them first, the gener­

ated bit stream is ordered in importance. If truncated at any point, we lose the least

significant data and can still reconstruct the image with the most significant data.

As opposed to the embedded coding used by EZW, which sends the most signifi­

cant bits first, our algorithm first sends the most significant data in its full precision.

Effectively, this assigns a greater significanee to the least signifieant bit of a larger

surprise than the most significant bit of a smaller surprise. We are presently consider­

ing an improvement to this approach, motivated by the prioritized ordering of SPIHT.

Since we order the surprises aeeording to their magnitudes, regardless of scale and

spatial location, we must transmit their positions in the coordinate space together

with their magnitudes and signs because the coding order is unknown to the receiver.

For this purpose, we traverse the eoordinate space and encode the nodesas we num­

ber them in Chapter 2, in which nodes at higher scales have smaller numbers than

those in lower seales.

The ordered sequence of (surprise, index) pairs contain aIl the information of the

original image. However, this leads to a deerease in coding efficiency sinee a naive

representation of these pairs is extremely costly. In order to reduce the overhead, we

introduee a bucket data structure, which contains a set of node index numbers, aH of

which have the same surprise, s. The bucket index number is determined directly by

s. For example, let us consider the following ordered (surprise, index) sequence:

(100,1), (100,5), (100,6), (-100,7), (48,34), (48,56), (48,90), (48,101),

(48,108), (48,110), (-10,20) ...

29



3.2 THE BUCKET DATA STRUCTURE

Collecting these into buckets, we have:

Bucket 100

Bucket -100

Bucket 48

Bucket -10

1,5,6

7

34, 56, 90, 101, 108, 110

20

where the bucket's index number represents the surprise of an contained nodes within

it. Now instead of coding the ordered (surprise, index) pairs, we can code the bucket

index number followed by an ordered sequence of node numbers. While this step

decreases the coding efficiency, we can compress the data even further.

Recalling that the surprise of a node in the coordinate space depends in part on the

size of the image region it represents. As a consequence, nodes in one layer are likely

to have larger surprises than those in the child layer. To state this more concretely,

let Px(x) be the probability density function (PDF) of surprises in layer L k , and Py (y)

be the PDF of surprises in layer Lk+l, where the root of the coordinate space is in

layer Lo. We then have the inequality:

which suggests that nodes in one layer generally have greater surprises than their

children. In practice, buckets tend to collect nodes from the same layer, or several

adjacent layers. Consequently, the index numbers in one bucket are often correlated,

and the difference between two consecutive numbers is generally smal!. This prop­

erty suggests encoding the difJerences between node indices. Consider the previous

example in which Bucket 48 contains the following six indices:

34, 56, 90, 101, 108, 110
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3.3 BUCKET COALESCING

The average of these indices is 83.17. Subtracting adjacent pairs (with an implicit 0

in the leftmost position) results in the sequence:

34, 22, 34, 11, 7, 2

The average is these differences 18.33, considerably less than the original values, thus

allowing for a significant data reduction. Note that the differences are aIl positive

since the indices are generated in ascending order.

This difJerential encoding is most effective for the small-indexed buckets, which con­

tain many nodes. For example, Figure 3.2 shows the histogram of index differences

in Bucket 1 of the 256 x 256 Lena image. The skewed distribution indicates that dif­

ferences between raw indices are generally small. This figure shows only differences

within the range [0,100]. In fact, for differences between 101 and 675 (675 is the

maximum difference in this bucket), the histogram contains almost no entry.

0.25,---,---,------,----,----,------,---,-----,------,---,

0.2

0.15

0.1

0.05

°01..L----'-'O-~2..c0===30~==±40~=5d..0-~6'-0---'-70--8-'--0---9'-0---l,DO

FIGURE 3.2. Histogram of differences in Bucket 1 of 256 x 256 graylevel Lena

3. Bucket Coalescing

The total number of buckets depends on the complexity of the original image, typi­

cally ranging from several hundred to several thousand. For each bucket, we first code

its header, which contains the surprise value, the number of nodes in the bucket, and
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3.3 BUCKET COALESCING

sorne additional parameters to be described later, and then code the differences one

by one. The bucket headers introduce coding overhead, so it is important that these

remain small compared to the actual bucket data. Unfortunately, complex images

require a large number of buckets, with many containing only a handful of nodes. For

such buckets, the headers outweigh the bucket data thus greatly reducing efficiency.

To address this problem, we consider coalescing buckets together to generate super

buckets.

A naive method is to coalesce those whose labels (surprises) have the same k most

significant bits. We can group nodes with positive surprises into even-numbered

buckets, and those withnegative surprises into odd buckets, using the sign bit to

choose between even and odd buckets, and the k most significant bits of the magnitude

to determine the super bucket label. Suppose the magnitude is expressed as a 16-bit

number. Then k most significant bits of surprise are used as an index, effectively,

combining every 216
-

k buckets into a super bucket according to:

{
(2 x Isurprise!) » (16 - k)

super bucket number =
{(2 x jsurprisel) » (16 - k)} + 1

The example for k = 12 is summarized in Table 3.1.

if surprise 2:: 0

otherwise

Surprises 1 Super Bucket Number 1

0, 1, 2 ... 15 0, ,
-1 , -2, -3,"',-15 1
16, 17, 18,'" , 31 2

-16, -17 , -18 , .. " -31 3

TABLE 3.1. A naïve method for bucket coalescing

In order to recover completely each surprise in the decoder, we must store the re­

maining least significant bits as an amendment to the node number.
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3.3 BUCKET COALESCING

For example, node 62 has a surprise of -120 (- 0000 0000 0111 1000b) , so for k =

12, it belongs to super bucket 15. The four least significant bits (1000b) are stored

with the node number, 62. Suppose, prior to the insertion of node 62, super bucket

15 contains the following:

Super bucket 15
info -7
number of data 7
last node 43
data 8(12), 1(9), 4(3), 12(0), 9(6), 5(0), 4(3)

TABLE 3.2. Super bucket 15 before adding node 62

The info field expresses both the sign and 12 most significant bits of surprise, and the

last node field records the full data of the latest inserted node index. After adding

node 62, we have:

Super bucket 15
info -7
number of data 8
last node 62
data 8(12), 1(9), 4(3), 12(0), 9(6), 5(0), 4(3), 19(8)

TABLE 3.3. Bucket 15 after adding node 62

Note that the final data element contains 19 (the difference between 62 and the last

node as weIl as 8 (1000b), the four least significant bits of surprise as an amendment.

And the new last node of super bucket 15 is 62.

When decoding this bucket, each node index can be obtained by accumulating differ­

ences, and the surprise is recovered by:
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bucket number X 216
-

k + amendment bits

(if bucket number is even)

-[(bucket number - 1) X 216
-

k + amendment bits]

(if bucket number ~s odd)

We caU this method fixed coalescing because it uses a fixed number k to coalesce

the buckets. Although the k amendment bits for each node require extra space, the

differences within a bucket become smaller and can thus be coded more efficiently.

However, this naive method has a significant disadvantage. We know that a natural

image is highly spatially correlated because adjacent pixels are likely to have the same

or similar intensities (or colors). As a result, a node's surprise is likely to be small,

with most nodes being c1ustered in the lower labeled buckets, while the remaining

sparsely scattered across the higher ones, as shown in Figure 3.3. This is problematic

because we cannot code buckets with few nodes efficiently. Because of the low den­

sity of nodes in the higher numbered buckets, the fixed coalescing strategy has little

ameliorating effect.

8ooo,----------r----------,~------___,

7000

6000

5000

~
~ 4000

!
3000

2000

1000

°OL-------.:=="co=======,O~O=~-------i,50
Bucket number

FIGURE 3.3. Nades distribution amang buckets for 256 x 256 grayscale Lena
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To address the problem, we introduce logarithmic coalescing, which coalesces higher

numbered buckets more aggressively. As for the fixed coalescing, nodes of positive

surprises are assigned directly to even buckets, and those of negative surprises ta

odd buckets. A factor w is used to control the coalescing, dividing abs(i), i =

o ±1 ±2 ... into ranges [0 2W
) [2 W 2W +1) ... [2w+n - 1 2w +n ) Buckets in the first, , , , , , , " , .

range r = 0 already contain a large number of nodes, sa they need not coalesced. In

the second range r = 1, we coalesce every two adjacent even or odd buckets, and thus

generate 2w - 1 new buckets, whose nodes include one amendment bit. In the third

range r = 3, we coalesce every four even or odd buckets and generate 2w - 2 new ones,

whose nodes include two amendment bits, and sa forth.

Figure 3.4 represents the bitmap of a bucket label after coalescing and illustrates

how the bucket is indexed using the surprise value. Let r denote the range of the

coalesced bucket, the llog2rJ+ 1 (lxJ indicates the largest integer not exceeding x)

most significant bits contain the width of the amendment, followed by the w most

significant bits of abs(surprise) , counted from the first set bit. The least significant

bit records the surprise's sign, 0 for positive and 1 for negative.

ŒŒJ·· ..··I~xl······ŒŒJ
... .., ... ..1 ......

width of
amendment

w most sign bit
significant bits 0 for positive

of surprise 1 for negative

FIGURE 3.4. Bucket label bitmap

For example, consider anode with surprise -307 (- 1 0011 OOllb), and assume the

choice of w = 8. Because 28 < 307 < 28+1, it fans into the second range, r = 1, in

which one amendment bit is recorded. The w most significant bits are 1001 1001,

and the sign bit is 1, so the bucket number is (1, 1001 1001, lb), or Ox333. Further

examples are listed in Table 3.4, with numbers expressed in hexadecimal format for
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3.3 BUCKET COALESCING

clarity.

Original Bucket 1 Coalesced Bucket 1 Amendment width 1

0 0 0
+1 Ox02 0
-1 Ox03 0
+2 Ox04 0
-2 Ox05 0
... ... ...

+Oxff OxHe 0
-Oxff Oxlff 0

+OxlOO, +Ox101 Ox300 1
-Ox100, -OxlOl Ox30l 1

+Oxl02, +Ox103 Ox302 1
-Oxl02, -OxlO3 Ox303 1

... ... ...
+OxHe, +Ox1ff Ox3fe 1
-OxHe, -Oxlff Ox3ff 1

+Ox200, +Ox20l, +Ox202, +Ox203 Ox500 2
-Ox200, -Ox201, -Ox202, -Ox203 Ox501 2

... ... ...

TABLE 3.4. Logarithmic bucket coalescing with w = 8

The factor w is an essential parameter that directly influences the performance of

coalescing and encoding. Figure 3.5 shows the node distribution among buckets with

different coalescing factors for 512 x 512 grayscale Mandrill image. With lower w,

the node distribution is more uniform, but more amendment bits are required. Good

coding performance is achieved by making a trade-off between an even distribution

and fewer amendment bits. Generally speaking, a factor between [3,5] is appropriate

for most practical applications. In the remainder of this thesis, we use w = 4.
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4. Summary

Bucket encoding is a kind of embedded coding that contains alliower rate codes em­

bedded at the beginning of the bitstream. It allows the encoding or decoding to be

terminated in the middle of a pass, without introducing artifacts that would indicate

where the termination occurred.

Bucket encoding is achieved by ordering nodes according to their surprises' magni­

tudes and transmitting the most significant nodes first. Buckets collect nodes with the

same surprise (or wavelet coefficient). The differences between two adjacent nodes

within a bucket are computed in order to remove correlation further. In order to

improve the encoding efficiency, logarithmic coalescing is used to combine buckets.
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CHAPTER 4

Encoding

1. Prefix Coding

According to information theory, an efficient variable-size code assigns short code

words to common symbols and long code words to rare ones. To avoid ambiguity,

such a code must obey the prefix property, that is, no code word is a prefix of any

other code word. To understand this property, consider the following code book,

which violates the prefix property:

Symbol al a2 as a4

Code 1 01 001 010

If we receive the 15-bit code string:

101001001010011

we can either decode it as al a2 a3 a3 a2 a3 al, or al a4 a2 a3 a4 a2 al, hence this code

is ambiguous. We can remedy this problem by inserting special break symbols, for

example, 0000, into the code string to separate different code words, but this is obvi­

ously inefficient. Alternatively, we can replace the code for a4 by 000, which restores

the prefix property and thus allows for Immediate and unambiguous decodability.



4.2 MULTI-RANGE ENCODING METHODS

If a statistical model of data is known a priori, we can use a statistical coding method,

such as Huffman coding or arithmetic coding, to compress data. However, generat­

ing such a model can be expensive, and furthermore, may not result in an optimally

efficient representation. In the following discussion, we examine alternative prefix

codings for the bucket data.

A simple prefix code is the unary prefix code, illustrated in Table 4.1. Four code word

groups are defined, each of which i8 comprised of an unambiguous prefix followed by

a number of data bits. The code words are designed in such a way that every code, or

every set of two codes from the first group, ends on a byte boundary. This method,

although simple and fast, is inefficient, because it often expands the data rather than

cornpress it.

Range of integers

1 Oxxx 8 [0,8)
2 10xx,xxxx 2° [8,8+2°)
3 110 x, Xoo.xx 21J [8 + 2°, 8 + 2° + 21J

)
'---v--'

13
4 111 X,X ...XX 2:L1 [8 + 2° + 21J

, 8 + 2° + 21J + 2:L1)
'---v--'

21

~ Codeword format 1 Number of codewords 1

TABLE 4.1. General unary prefix coding

2. Multi-range Encoding Methods

Unary prefix coding uses a global, predetermined code book for aU the data. Such a

method works best when the data is of a single type or is evenly distributed. However,

as discussed in Chapter 3, image nodes tend to be distributed in an irregular man­

ner, both across and within buckets, thus suggesting the use of an adaptive method

instead.
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4.2 MULTI-RANGE ENCODING METHODS

For each bucket, we can find the maximum difference d max , which determines the data

range as well as the maximum number of bits needed for every element. Since

the distribution of node differences within a bucket is skewed toward small values,

we can exploit this property by selecting a coarse threshold, dmean , which requires

fewer bits than dmax , and then encoding each node according to its relationship to

this threshold adaptively. For maximum efficiency, dmean is updated for each element

based on the running average of the last N nodes, where N is typically chosen from

the range [16,64]. For the first N nodes who have fewer predeeessors, we pad enough

zeros. Given dmean and d max , we encode a node di as:

{
O~ :

1~
n

where n :::; LI + l092dmaxJ and m :::; LI + l092dmeanJ (LxJ indicates the largest integer

not exceeding x). dmax is encoded in the bucket header. d mean for each data can be

recovered by the decoder sinee the encoder and decoder are symmetric, and data is

received and decoded in the same order as it is sent.

2.1. Encoding Values < dmean . As a first approach to encoding data di :::;

d mean , we consider the naive method of representing such values using k = LI +
l092dmeanJ bits, as described above. However, it is possible to do considerably better

by exploiting a statistically based adaptive method.

Suppose we are trying to encode a number x in [0, n), where n represents dmean- Any

such n can be expressed as the sum of powers-of-two, according to the set bits in its

binary representation, for example, 53(llülOlb) = 32 + 16 + 4 + 1. We denote the

powers-of-two components of n as SI, S2, ... ,Sk, where SI is the largest, and introduce

So = 0, such that So + SI + S2 + ... + Sk = n. With Si (i = 0,1,2, ... , k), we divide
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4.2 MULTI-RANGE ENCODING METHODS

[0, n) into k subranges, denoted as ri (i = 1,2, ... , k):

The length of ri is Si, and ri > rj (i < j). Using powers-oJ-two breakdown coding, we

can express the value of a sample falling in range ri with Si bits, preceded by a prefix

indicating the range, as shown in Table 4.2.

Subrange Codewords 1 Number of codewords
1 [0, sd 0

~ SI

1092(S1)

2 [SI, SI + S2 ) 10
~ S2

1092(S2)
. , . ... .. . . ..
k-1 [L7~~ Si , L7=~ Si ) U;J0 ~ Sk-l

k-2 1092(Sk-l)

k [L7=; Si, n) J1v2 ~ Sk

k-l 1092(Sk)

TABLE 4.2. Powers-of-two breakdown coding

For example, [0,53) is divided into four subranges [0,32), [32,48), [48,52) and [52, 53),

with associated codewords are listed in Table 4.3. Note that the final codeword for

53 is represented entirely by its prefix 111.

Since the encoding of small numbers is less efficient than large ones, and larger ones

occur with lower frequency, we code dmean - di instead of di. For large buckets, the

probability density function of node differences can be approximated by:

where 0: is usually less than one. In order to obtain this approximation, differ­

ent regression functions were tested on node distributions of populated buckets and

the exponential function was found to have the least deviation in regression. When
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4.2 MULTI-RANGE ENCODING METHODS

:=J Subrange 1 Codewords 1 Code length
0: 0,00000
1: 0,00001

1 [0,32) 2: 0,00010 6
... ...

30: 0,11110
31: 0,11111
32: 10,0000 6

2 [32,48) 33: 10,0001
... ...

47: 10,1111
48: 110,00

3 [48,52) 49: 110,01 5
50: 110,10
51: 110,11

4 [52,53) 52: 111, 3

TABLE 4.3. Example of powers-of-two breakdown coding with drnean = 53

dmean = 53, the average code length of dmean - di is:

4 W ~

3 ae-aO + 5 L ae-ai + 6 L ae-ai + 6 L ae-ai bits
i=l i=5 i=21

Empirically, we find that a is approximately 0.2, yielding an average code length of

5.52 bits, which is significantly better than the 8 bits for unary prefix coding, follow­

ing the specification of Table 4.1.

2.2. Encoding Values> dmean . When data di is larger than dmean , we en­

code di - dmean within the range dmax - dmean . If dmean is relatively small compared to

dmax , the data range dmax - dmean is relatively large, we found that the powers-of-two

breakdown method is not efficient enough. For example, consider the codebook for

the powers-of-two breakdown method when dmean = 1000 (11,1110, 1000b), as shawn

Table 4.4.
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4.2 MULTI-RANGE ENCODING METHODS

subrange Codeword 1 code width
1 [ 0, 512) Ox,xxxx,xxxx 10
2 [512, 768) 10,xxxx,xxxx 10
3 [768, 896) 1l,Oxxx,xxxx 10
4 [896, 960) 11 ,10xx,xxxx 10
5 [960, 992) 1l,110x,xxxx 10
6 [992, 1000) 1111,lxxx 8

TABLE 4.4. Powers-of-two breakdown coding with dmean = 1000

Range of integers
1 sl=l~nJ O~ 1 + l*nJ [0, 281 )

LinJ
2 S2 == l~nJ 10~ 2 + l~nJ [281, 281 + 282 )

L~nJ

3 S3 = l~nJ 110~ 3 + l~nJ [281 + 282, 281 + 282 + 283 )

L~nJ

4 S4 = n 111~ 3+n [281 + 282 + 283,281 + 282 + 283 + 284 )

n

::!D nth subrange 1 Codeword 1 Code width 1

TABLE 4.5. Quadrange coding

If a = 0.2, the average code width is:

i<8 i<lOOO

8 L ae-Œi + 10 L ae-Œi = 9.27 bits
i=O i=8

there is little saving of bit budget compared with the 10 bits native coding. Since it

i8 typically the case that dmax » dmean , we make use of another method, referred to

as quadrange coding, for any di > dmean .

Suppose (dmax - dmean ) is an n-bit number. We first divide (0, dmax - dmeanJ into four

ranges {Sl,S2,s3,s4}, which are l~nJ, l~nJ, l~nJ, and n bits long, respectively, and

then code the data di - dmean as shown in Table 4.5.
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4.3 SUMMARY

From the previous example, 1000 (11,1110, 1000b) is 10 bits long, so for quadrange

coding, SI = 5, S2 = 6, S3 = 8, S4 = 10, the average code width is:

i<32 i<96 i<352 i<1000

6 L ae-ai + 8 L ae-ai + 11 L ae-ai + 13 x L ae-ai = 6.62 bits
i=O i=32 i=96 i=352

which is much better than either powers-of-two breakdown encoding or unary pre­

fix encoding. Therefore, we explore the quadrange coding method for data di in

(dmean , dmax ].

3. Summary

An efficient, adaptive multi-range encoding of bucket contents is described. This

method relates to two numbers; dmax , which is calculated for each bucket, and dmean ,

which is adaptive to individual data element within a bucket. According to its numer­

ical relationship to dmean and dmax , data di is encoded by the powers-of-two breakdown

method or, the quadrange method. Both of these satisfy the prefix property so the

data can be decoded unambiguously,

Using the notation that j(a, b) describes an encoding function in which a denotes the

data being coded and b denotes the coding range, our multi-range encoding algorithm

can be summarized as follows:
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4.3 SUMMARY

code the header for bucket k with fixed-length codes

dmax *- maximum difference of nodes in bucket k

dmean *- 0

w *- amendment width of bucket k

for each data di in bucket k:

dmean *- running average of the last N predecessors of di

( i.e. ~ [di- N + di-N+l + ... + di- 2 + di- 1 ] )

if di :S dmean then

code the prefix 0

code powers-of-two breakdown (dmean - di , dmean )

else

code the prefix 1

code quadrange (di - dmean , dmax - dmean + 1 )

code amendment of di in w bits
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CHAPTER 5

Color Image Compression

1. Color Spaces

Color is the perceptual result of light in the wavelength range of 400 to 700 nm.

Physically, the intensity of a color is "a measure over sorne interval of the electromag­

netic spectrum of the flow of power that is radiated from, or incident on, a surface.

[15]" Brightness is defined as "the attribute of a visual sensation according to which

an area appears to exhibit more or less light." The Commission Internationale de

L'Éclairage (CIE) defines the luminance as the radiant power weighted by a spectral

sensitivity function that is characteristic of vision. Hue is the attribute of a color

perception influenced by its dominant wavelength, for exaniple, blue, green, yellow or

red. Saturation, or purity, is the degree of color concentration at any one wavelength.

There are three types of color photoreceptor cone cells in the human retina, which

respond to light and affect perception. Thus, color may be described by the triplet

(x, y, z), denoting a point in three-dimensional space; hence the term color space.

Color images are generally represented as an array of pixels, where each pixel contains

the numerical components that define its color. A practical image coding system must

be computationally efficient, cannot afford unlimited precision, and needs to coyer a

reasonably wide range of colors. In the remainder of this section, we discuss two
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5.1 COLOR SPACES

common colar systems in use today, RGB and YVY.

The RGB model, shown in Figure 5.1, is the eolar space favored by CRT monitors

and raster graphies display. RGB is composed of the additive primary colors, red,

green, and blue, in which the desired colar can be produced by an addition of ap­

propriate quantities of each primary component. The diagonal from black (0,0,0) to

white (1,1,1) represents varying intensity of grayscale.

B

1
Blue (0,0,1)

1
1
1

1

Blac~/~/:~ \ +-(0_,1_,0_)---1'" G

/ / grayscale Green
/

(1,0,0) )'-/ --Y

Red

R

FIGURE 5.1. RGB color model

The YVY model, commonly used in video transmission, was invented for backward

compatibility of colar television broadcasts with black and white televisions. YVY

can be derived from RGB through the following matrixed operation:

y 0.30 0.59 0.11 R

U 0.70 -0.59 -0.11 G

V 0.30 -0.59 0.89 1 Bl,
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5.2 STRUCTURE OF COLOR IMAGE COMPRESSION

y refers to the luminance of the color, other words, its grayscale value, while U

and V refer to the differences between R and Y, and B and Y, respectively.

The inverse transformation matrix is:

R 1 1 0 Y

G 1 -0.3 -0.11 U0.59 0.59

B 1 0 1 V

2. Structure of Color Image Compression

Since an RGB image can be regarded as three separate color planes, the most straight­

forward compression algorithm is to transform and encode the three color planes

independently, as shown in Fig 5.2.

R

H H r--~ Decomposition Node sorting Encoding

y Decomposition H Node sorting H Encoding r--
~ Decomposition H Node sorting H Encoding r--

FIGURE 5.2. Naive color image compression in RGB

A more efficient method is shown as Fig 5.3, in which the image is first transformed

from RGB to its YUV representation which is then encoded in separate channels.

Since the human eye is sensitive to small changes in luminance (brightness) but

less so to small changes in chrominance (color), the U and V components may be

compressed somewhat without introducing distortions to which the eye is sensitive.

Many lossy compression methods, such as JPEG [10], take advantage of this obser­

vation, compressing U and V more aggressively than Y, or even downsampling the
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5.2 STRUCTURE OF COLOR IMAGE COMPRESSION

two chrominance components in order to reduce bandwidth.

Decomposition Node sorting Encoding

Color
Decomposition Node sorting Encoding

Transform

Decomposition Node sorting Encoding

FIGURE 5.3. Color image compression through transformation to YUV

We rnay also cornpress the three color cornponents, either in RGB and YUV space,

together as a vector, as shown in Fig 5.4. the decornposition step, each node is

associated with a three-dirnensional surprise vector, representing the contribution of

each color cornponent. In bucket encoding, the significance of node is determined by

sorne matrixed quantity. This method, however, risks affecting the hue of the image

because one color component may lose more information than the others.

OptionaJ

Color

Transform
Decomposition Node sorting Encoding

FIGURE 5.4. Color image compression by vector
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CHAPTER 6

Experimental Results

In this chapter, we review our experimental results of encoding and decoding images

with the ROHR algorithm. Results for grayscale and color image encoding are de­

scribed. We discuss the quality of the recovered image and compare the results with

other relevant compression algorithms, from the aspects of both compression quality

and computational efficiency. Advantages and disadvantages of our algorithm are

presented and analyzed.

First, we briefly summarize the encbding steps involved in ROHR, as follows: Images

first undergo a wavelet transform and quincunx decomposition into a two-dimensional

coordinate space. The transform coefficients or surprises are then sorted into buckets

according to their magnitudes, and coded using a multi-range encoding method, which

requires a mean estimate of the difference between successive values. This estimate is

based on a running average of N samples; empirically we find N = 32 provides good

results. Buckets are coalesced using a coalescing factor w; we use w = 4. Finally,

in order to satisfy the embedded coding property, we transmit buckets in descending

order of their label magnitudes.



6.1 GRAYSCALE IMAGE COMPRESSION

1. Grayscale Image Compression

The encoder was applied to the standard black and white 256 x 256 Lena image and

the 512 x 362 Peppers image. Coding results for Lena are summarized in Table 6.1

and Figure 6.3. Similar results for Peppers are shown in Table 6.2 and Figure 6.4.

The compression ratio is defined as:

C
. . size of output stream

ompresswn ratw = -------~­
size of input stream

Note that our bit rates are not entropy estimates, but are calculated from the aetual

size of the eompressed files, and expressed in bits per pixel (bpp), sinee they represent

the average number of bits needed to express one pixel in the original image.

Error of the reconstructed image is measured by its Peak Signal to Noise Ratio

(PSNR). Denoting the pixels of the original image by Pi and the pixels of the re­

eonstructed image by Qi (where 1 ::; i ::; n), we define the Mean Square Error (MSE)

between two images as:

The PSNR is defined as:

PSNR is dimensionless and expressed in decibels (db). Greater resemblance between

images implies a smaller MSE and thus a higher PSNR.

Different bit rates are achieved by terminating either the encoding or deeoding at sorne

desired point. No artifacts are produced in the recovered image that would indicate

where the termination occurred. This is consistent with our daim that transmitting

the transform coefficients in descending order of their surprise magnitudes offers an

52



6.1 GRAYSCALE IMAGE COMPRESSION

effective Implementation of embedded coding. This further demonstrates that our

image decomposition method, described Chapter 2, can successfuIly detect anom­

alies in the original image, and use the magnitudes of these surprises to reconstruct

the image.

ROHR shows good performance at high bit rates, providing nearly indistinguishable

reconstructed images from the originals. Lossless compression is achieved by trans­

mitting aH non-zero nodes, and performance drops linearly with the decrease of bit

rate, as details are gradually lost. At very low bit rate, e.g. 0.1 bpp, almost aIl the

image details are lost, and artifacts become obvious.

1 Bitrate(bpp) 1 Bytes 1 Compression Ratio 1 Number of Nodes 1 PSNR(db) 1

6.804 55,742 1.2:1 65,535 00

4.064 33,290 2:1 26,214 42.396
2.027 16,605 4:1 10,485- 33.008
1.023 8,379 8:1 4,587 27.394
0.509 4,173 16:1 1,966 23.696
0.102 842 80:1 249 18.062

TABLE 6.1. Coding results for 256 x 256 grayscale Lena

1 Bitrate(bpp) 1 Bytes 1 Compression Ratio 1 Number of Nodes 1 PSNR(db) 1

6.531 151,314 1.2:1 185,343 00 1

4.038 93,558 2:1 83,404 43.169
2.024 46,886 4:1 31,508 35.791
1.018 23,588 8:1 13,900 30.922
0.510 Il,822 16:1 6,116 26.592
0.105 2,434 80:1 926 19.912

TABLE 6.2. Coding results for 512 x 362 grayscale Peppers

The performance of ROHR was also compared to the method of Set Partitioning in

Hierarchical Trees (SPIHT) [6][7] and the JPEG standard [10] [11]. SPIHT is an

extension of EZW [4]. It first performs a wavelet transform with 9-tap symmetric
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6.1 GRAYSCALE IMAGE COMPRESSION

quadrature mirror filters (QMF) [8], then sorts the coefficients according to their

magnitudes and transmits the most significant bits first. The spatial orientation tree

explores the self-similarity between subbands and is used to optimize the ordering

principle. It allows the user to determine the bit rate, and can achieve lossless com­

pression at the highest rate. JPEG does not allow the users to truncate the bit

stream, but permits a choice of quality factor. The performance of these three meth­

ods is compared in the plots of Figure 6.1, and the reconstructed images of Figure 6.5.

Generally, the PSNR of ROHR is 5db lower than JPEG and 1üdb lower than SPIHT.

At very low bit rates, both ROHR and JPEG exhibit prevalent blocking effects, while

SPIHT preserves an acceptable level of visual quality.

PSNR(db)

60,----,----.-----,----.----"*"---'1'-----,1-,

7

Bits/Pixel

654

+'1''1'... ROHR

xxxx SPIHT

:0 000 JPEG

32

25

15 '--__--'- '--__--'- "--__--l- -'--__---'

a

30

35

55

40

45

50

FIGURE 6.1. Comparative performance evaluation of ROHR

Further analysis reveals several reasons for the inferior performance of ROHR as com­

pared to SPIHT and JPEG. First, as discussed in Chapter 2, the wavelet transform

54



6.1 GRAYSCALE IMAGE COMPRESSION

bases are not orthogonal, thus producing correlated coefficients, which results in a

larger compressed flle because of redundancy.

Second, as discussed in Chapter 3, sinee surprises in the parent layer are statisti­

cany twice as large as those in the child layer, surprises from a given layer are often

grouped together. VVhile this property helps us achieve an efficient bucket coding,

it "implicitly de-emphasizes the outliers, which represent the most signiflcant anom­

alies or edges." [4] Because the signiflcanee of anode is determined by its surprise

magnitude, a decrease in bit rate usually leads to the discarding of more nodes from

flner, higher-resolution layers, than from coarser, lower-resolution layers. Thus, image

details, or edges, will be lost earlier than trends. This point is made more explicit in

Figure 6.2, which indicates the percentage of nodes in each layer that are transmitted

at various bit rates.

Solving this problem involves two aspects. First, the transform matrix should be

normalized, so that the high-pass fllter, which computes the surprises has zero gain,

and the low-pass filter, which computes the trends, has a unity, or near-unity gain.

Second, we should take into consideration the effect of inter-layer correlation. It is

important to realize that in a hierarchical subband decomposition system, the wavelet

fllters and the decomposition method are independent. In a pyramid decomposition,

for example, with the exception of the highest frequency subbands, every coefficient

at a given layer is related to four coefficients at the next flner scale of similar orienta­

tion. We could abstract this decomposition method as a quadtree structure, in which

every non-Ieaf node has four children in the same orientation. Note that the meaning

of children in this context is different from that of image decomposition into a coor­

dinate space. Similarly, the quincunx decomposition could be regarded as a bintree

structure, with every non-leaf node in this structure having two children. Based on

these models, Shapiro [4] presented the hypothesis in his EZW algorithm and then
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6.1 GRAYSCALE IMAGE COMPRESSION

10 12
layar

(a) 8 bits/pixel

(b) l bit/pixel (c) 0.1 bit/pixel

FIGURE 6.2. Nades being sent in each layer for 256 x 256 grayscale Lena

proved that "if a coefficient at a coarser scale is insignificant with respect to a thresh­

old then aIl of its descendants are also insignificanV' This is also stated in SPIHT

[6] as "a spatial self-similarity between subbands," and "the coefficients are expected

to be better magnitude-ordered if we move downward in the pyramid foIlowing the

same spatial orientation." To take advantage of this property, .SPIHT checks every

coefficient recursively. If it and any of its direct descendants are significant to this

threshold, these are coded first. This scheme sorts the coefficients according not only

to their magnitudes, but also to their scales and spatial locations. It has proved to

be effective in EZW and SPIHT, and could be used to improve the performance of
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6.2 COLOR IMAGE COMPRESSION

ROHR. This remains a subject of ongoing research.

Despite its inferior compression performance, ROHR surpasses both JPEG and SPIHT

in execution speed, which is our major concern. Most importantly, encoding time

must be minimized because this stage provides uniform data to aIl clients, while dif­

ferent users are free to configure their decoders as desired. Table 6.3lists the encoding

times (including CPU and 1/0 time) for ROHR, SPIHT and JPEG, aIl running on

a dual-processor Intel i686 workstation, for the 256 x 256 Lena image. Although the

execution speeds of them depend on the size of the compressed file, the execution

speed of ROHR is superior to both SPIHT and JPEG, and demonstrates better scal­

ing performance with increased bit rate.

Bit Rate 8 4 2 1 0.5 0.1
ROHR (s) 0.041 0.034 0.027 0.025 0.023 0.023
SPIHT (s) 0.15 0.14 0.09 0.05 0.04 0.03
JPEG (s) 0.317 0.233 1.167 0.150 0.133 NA

TABLE 6.3. Comparative execution times of ROHR, SPIHT and JPEG for
encoding 256 x 256 grayscale Lena at various bit rates

2. Color Image Compression

The ROHR color image encoder was applied to the 512 x 512 pixels YUV 4:2:0 House

image in which there are four parts of luminance, and one part each of the two chromi­

nances. The results were summaried in Table 6.4.

We also compare the performance of this compression method with SPIHT, with the

results plotted in Figure 6.6, and reconstructed images shown in Figure 6.8. Their

execution speed comparison is shown in Table 6.5. While SPIHT provides superior
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1 Bit Rate (bpp) 1 Bytes 1 Compression Ratio 1 Total Bits 1 PSNR (db) 1

8049 278,200 1.9:1 2,225,602 inf.
7.00 229,376 2.3:1 1,835,008 49.79
3.00 98,304 5.3:1 786,432 35.89
1.00 32,768 16:1 262,144 28.96
0.50 16,384 32:1 131,072 26.11

TABLE 6.4. Compression results of 512 x 512 YUV 4:2:0 House image

Bit Rate 8049 7 5044 4 3 2 1 0.5
ROHR (s) 0.16 0.15 0.14 0.13 0.12 0.12 0.11 0.11
SPIHT (8) DAO 0.33 0.26 0.20 0.14 0.11

TABLE 6.5. Comparative execution times of RüHR and SPIHT for encoding
512 x 512 YUV 4:2:0 house image at various bit rates

quality decodings than ROHR, the computational efficiency of the latter make it bet­

ter suited to the needs of real-time bandwidth-limited channels.
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(a) Original image at 8 bits/pixel

(c) 4 bits/pixel

6.2 COLOR IMAGE COMPRESSION

(b) Lossless compression at 6.8
bits/pixel

(d) 1 bit/pixel

(e) 0.5 bit/pixel (f) 0.1 bit/pixel 59

FIGURE 6.3. Recovered images of 256 x 256 grayscale Lena
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(a) Origin.al image at 8 bits/pixel

(c) 4 bits/pixel

(e) 0.5 bit/pixel

(b) Lossless compression at 6.5 bits/pixel

(d) l bit/pixel

(f) 0.1 bit/pixel

FIGURE 6.4. Recovered Images of 512 x 362 grayscale Peppers
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(a) ROHR at 1 bit/pixel

(c) JPEG at 1 bit/pixel

(e) SPIHT at 1 bit/pixel

6.2 COLOR IMAGE COMPRESSION

(b) ROHRat 0.2 bit/pixel

(d)JPEG at 0.2 bit/pixel

(f) SPIHT at 0.2 bit/pixel
61

FIGURE 6.5. Performance comparison of ROHR, JPEG and SPIHT operat­
ing on 256 x 256 grayscale Lena



6.2 COLOR IMAGE COMPRESSION
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FIGURE 6.6. Comparative performance of color image compression
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(a) Original image at 24 bits/pixel

(c) 2 bits/pixel

6.2 COLOR IMAGE COMPRESSION

(b) 8 bits/pixel

(d)O.5 bit/pixel

FIGURE 6.7. Recovered images of 512 x 512 YUV 4:2:0 House
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(a) ROHR at 3 bit/pixel

(c) SPIHT at 3 bit/pixel

6.2 COLOR IMAGE COMPRESSION

(b) ROHR at 0.5 bit/pixel

(cl) SPIHT at 0.5 bit/pixel

FIGURE 6.8. Performance comparison of ROHR and SPIHT operating on
512 X 512 YUV 4:2:0 House image
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CHAPTER 7

Conclusions

1. Summary of Work

In this thesis, we have presented a new image compression algorithm that performs

spatial image decomposition and bucket coding in an embedded format. The main

features of this algorithm are:

1. Spatial decomposition decorrelates the image by expressing the data as a series

of multiresolution surprises in a hierarchical structure, reflecting the anomalies

at different scales. This decomposition is similar to a wavelet transform in that

it divides the image into several subbands, but differs by using integers, rather

than floating point operations, for accuracy and computational efficiency.

2. Buckets collect nodes with the same surprises, and in effect, arder the nodes

according to the magnitude of their surprises. Transmitting nodes with higher

surprises first satisfies the requirements of embedded coding, thus allowing the

encoding or decoding to be stopped at any point. Bucket coalescing balances

the distribution of nodes, and increases coding efficiency by decreasing the

frequency of sparsely populated buckets.
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3. Adaptive multi-range coding of the bucket contents further capitalizes on intra­

bucket correlation. Since no statistical model or training process is required,

this offers a general-purpose approach that performs well with many data type.

4. This algorithm is computationally efficient, and can be applied for live video

rates at resolution of 256 x 192.

2. Future Work

The design of wavelet transforms remains an essential problem for image compres­

sion, directly influencing the image representation and compression performance. The

wavelet transform (or spatial image decomposition) used in this thesis is not orthonor­

mal and thus produces correlated coefficients, which results in a larger compressed

file and decreases the compression efficiency. A future improvement of the ROHR

algorithm therefore involves designing an orthonormal and computationally efficient

wavelet transform kernel. Furthermore, since the surprise of every M-node is ignored

during the encoding and recovered from its neighboring N-nodes during the decoding,

its accuracy is completely dependent on its neighbors. Any distortion in the values of

its neighbors will cause an opposing error in its value. This error will be inherited by

the M-node's children, propagated to a wider area, and accumulated layer by layer

until the bottom of the coordinate space, which represents the reconstructed image.

Consequently, any deviation in a coarser-resolution layer will result in a larger devia­

tion over a wider area in the finer-resolution layers. An important factor to increase

compression performance is thus the control and remedy of this kind of deviation.

Another important problem is the exploration of the inter-scale correlation based on

self-similarity in bucket encoding. Predicting a transitive insignificance across scales

could provide substantial coding gains,
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7.2 FUTURE WORK

Data reliability and robustness is another problem deserving further investigation.

ROHR packs data bit by bit into the output stream in order to increase compression

efficiency. However, the bucket format and multi-range coding method make the bits

highly correlated. If only one bit is distorted during transmission, the entire decoding

process could collapse. Unfortunately, image compression in removing redundancy

also decreases reliability. In certain applications such as narrow-bandwidth video

transmission, data robustness is as important as compression performance. There­

fore, the generation of reliable and efficiently compressed data is not only a concern

of ROHR, but also problem of image compression in general.
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