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Abstract 

Natural communication between humans is not limited to speech, but often requires simultaneous coordi­

nation of multiple streams of information - especially hand gestures - to complement or supplement un­

derstanding. This thesis describes a software architecture, called CLAVIUswhose purpose is to generically 

interpret multiple modes of input as singular semantic utterances through a modular programming interface 

that supports various sensing technologies. This interpretation is accompli shed through a new multi-threaded 

parsing algorithm that co-ordinates top-down and bottom-up methods asynchronously on graph-based unifi­

cation grammars. The interpretation process follows a best-first approach where partial parses are evaluated 

by a combination of scoring metrics, related to such criteria as information content, grammatical structure 

and language models. Furthermore, CLAvIUsrelaxes two traditional constraints in conventional parsing -

namely, it abandons forced relative ordering of right-hand constituents in grammar rules, and it allows parses 

to be expanded with null constituents. 

The effects of this parsing methodology, and of the scoring criteria it employs, are analyzed within the 

context of experiments and data collection on a small group of users. Both CLAvIUSand its component mod­

ules are trained on this data, and results show improvements in performance accuracy, and the overcoming 

of several difficulties in other multimodal frameworks. General discussion as to the linguistic behaviour of 

speakers in a multimodal context are also described. 



Résumé 

La communication naturelle entre les humains n'est pas limitée à la parole, mais s'exige souvent de la co­

ordination simultanée de plusieurs sources d'information - particulièrement les gestes manuelles - lorsqu'ils 

complétent ou ajoutent à la comprehension. Cette thèse décrit une architecture de logiciel, appelée CLAV­

lUS, dont le but est l'interprétation générique de plusieurs modes· d'entrée comme des énoncés ayant des 

significations uniques par une interface de programmation modulaire qui soutient de diverses technologies de 

sensation. Cette interprétation est accomplie par un nouvel algorithme multi-fileté d'analyse grammaticale 

qui coordonne des méthodes asynchronés sur des grammaires d'unification fondées sur une représentation 

graphique. La procédure d'interprétation suit une approche de meilleur-en-premièr donc les analyses gram­

maticales sont évalués par une métrique combinatoire de marquage, liée à des critères tels que le contenu 

de l'information, la structure grammaticale et les modèles de la langue. De plus, CLAVlUsdétend deux con­

traintes traditionnelles dans l'analyse grammaticale conventionnelle - notamment, il abandonne que l'ordre 

des constituants mains-droits soit obligatoire dans les règles de grammaire, et il laisse que l'analyse peut se 

composer des constituants nuls. 

Les effets de cette méthodologie d'analyse, et des critères de marquage qu'il utilise, sont analysés dans 

le contexte des évaluations et d'une collecte de données sur un group d'usagers. CLAVlUset ses modules 

compositionnels sont entraînés sur ces données, et les résultats montrent des améliorations dans l'exactitude 

d'exécution, et une surmontage des plusieurs difficultés dans les autres systèmes semblables. La discussion 

générale quant au comportement linguistique des usagers dans ce contexte multimodale est aussi décrite. 
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CHAPTER 1 

Introduction 

Whether describing a scene, or objects and actions in space, humans make frequent use of gestures not only 

to supplement, but also to complement their speech. For instance, when providing directions, a speaker will 

often depiet significant landmarks and the spatial relationships between them with their hands - the trajectory 

and distance between a fork in the road, for example, and a building. 

The key concept is that the human language is not a decoupled process, but involves the simultaneous 

coordination of multiple streams of information - not just speech. This will be expanded upon shortly. 

Multimodal interaction (MM!) represents a paradigm shift in engineering whereby traditional user in­

terfaces are replaced by more intelligent software capable of incorporating these multiple components of 

natural user communication simultaneously in order to infer their underlying semantic meaning. Through 

the combined processing of multiple input modes, of which speech and gesture are just two examples, these 

systems have made significant breakthroughs in the fields of Natural Language Processing (NLP) and Human­

Computer Interaction (HCI) . 

In this thesis a new software framework called Clavius is presented that combines an extensible archi­

tecture for MMI with a new set of algorithms that expand on modem NLP techniques to handle sorne pecu­

liarities of multimodal language. As a consequence of a modular framework, various divergent approaches 

to this task can be explored and incorporated within a single framework. 

The following section introduces the field of multimodal interaction research, briefly overviewing popu­

lar or interesting approaches thereof, as weIl as current benefits and challenges (§ 1.1 ). Relevant psychological 

theory (§2.3) is then briefly touched upon before describing the goals and contributions of this thesis (§1.2). 

1.1. Multimodal Homan-Computer Interaction 

A multimodal system is any one that allows users to express themselves using more than one channel of 

communication. Examples of the more prevalent of these inc1ude: 

speech: : natural human speech recorded by microphone. 



1.1. MULllMODAL HUMAN.COMI'U'fER. INTERACTION 

gesture: : gesticulation of the hands, as recorded by video or specialized equipment (ex. sensor­

laden gloves) (see §2.3). 

gaze/face: : the direction vector of the user's eyes (and therefore attention), and the shape of one's 

lips (indicative of the articulation of their speech). These are typically recorded by video-camera 

fixed on the user's face. 

pen: : use of a small stylus on a 2D reactive surface, such as a PDA or tablet PC, often used for 

handwriting recognition (see § 1.1.2.1 ). 

typing: : traditional keyboard entry. 

Multimodal interfaces have both taken advantage of and advanced the development of new hardware 

technologies. Current directions in MMI include expansion into more exotic hardware interfaces that incor­

porate haptic ("touch") information[119] [64], body position [4], and even directly measure brain activity 

[103]. 

1.1.1. Early History. The goal of supporting more expressive, efficient and flexible means of in-

teracting with machines represents an ongoing effort in Human-Computer Interaction. Already, multimodal 

interfaces have allowed for increasingly challenging applications that are usable by more people in a wide 

range of types of physical environments, and it is expected that eventually this 'next step' towards human-like 

sensory perception in machines will allow our technological counterparts to interact with humans naturally 

and transparently in everyday environments. 

Most research in multimodal human-computer interaction traces its origins to work done by Richard 

Boit at the Massachusetts Institute of Technology (MIT) in the early 1980s [14]. That worked involved staged 

interactions within a "media room" in which a seated user interacted with abstract objects on a wall-sized 

display using rudimentary speech commands augmented with gesture, such as "create a blue square there", 

and "put that there". In these examples, arm gestures provide the computer with information otherwise 

absent in the referring words, namely co-ordinate locations, and the identity of objects. A technological 

breakthrough at the time, it demonstrated two key facets of multimodal interaction: 

(i) that spontaneous multimodal expression provides an especially versatile and natural interface to 

the user, and 

(ii) that pronouns used as verbal arguments in HCI achieve the same usefulness as in ordinary dis­

course by being pronounced in the presence of a deictic reference to an object that functionally 

defines their meanings. 

Since that innovative early step, research in MMI has been divided primarily between exploration of 

the methods used to integrate information from the various modalities, and the empirical study of users 

in multimodal environments. For the most part, the abilities users possess in these environments have not 

2 



1.1. MULTIMODAL HUMAN-COMPUTER INTERACTION 

changed drastically since the se early systems, which often concentrated solely on direct manipulation of 

2-dimensional maps or charts [20] [21]. 

Moreover, despite more than two decades of pursuant research, no dominant paradigm has yet emerged 

for the generic interpretation of multimodal interaction. A commonality amongst many divergent approaches, 

however, is an apparent reluctance to treat multimodallanguage as a unique linguistic phenomenon, which 

results in computational models that are retrofitted to older approaches, as examples throughout this thesis 

demonstrate. 

1.1.2. Examples of MMI in Practise. A wide diversification and specialization in hardware in-

terfaces allows for various permutations of modalities, including speech with pen input, speech with lip 

movements, speech with manual gesturing, and gaze tracking with manual input. They also allow for vary­

ing physical environments in which these can be deployed - from portable devices to large or immersive 

spaces. It is important to note that MMI systems cover a wide range of complexities, and that this may limit 

comparability to sorne degree. 

1.1.2.1. Mobile MM/. As noted earlier, stylus input is indicative of multimodal mobile devices such 

as the PDA/Palm pilot, tablet PC, or cell phone, as shown in Figure 1.1. The small visual displays and 

cumbersome keypad input on these devices present limitations that cannot be overcome by voice browsers 

alone [30]. Combining speech with pen or keypad input, however, has led to increased access by a device 

to different types of programs and enhanced experiences in such mobile applications as stock trading or 

appointment scheduling. For example, stocks may be selected from a graphical list with the stylus, while 

commands applied to these selections may be spoken (eg. "seIl"). Interaction with the stylus is then still 

possible while speech or audio feedback is being conveyed by the device - creating a degree of concurrency 

not possible in unimodal interaction. 

Studies in such interaction scenarios indicate that flexible MMI allows users to manage changes in their 

cognitive load as the task complexity increases [36]. 

Figure 1.1: Example of mobile technology with stylus and speech interface. 
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1.1.2.2. Large Screen MM/. Interacting with large screens with arm gestures and speech has been 

employed chiefly to map-based applications in areas such as military intervention [117], crisis management 

[100], and weather narration [57]. This sort of arrangement typically involves a user standing directly before 

a large screen where arm gestures indicate virtual objects or locations on the screen, and speech conveys 

commands, as exemplified in Figure 1.2. Arms may be tracked by any combination of video-based tracking, 

infra-red (IR) sensors or wearable gyroscopic devices. 

Unlike mobile MMI, large-screen displays are not encumbered by the same physical limitations. In 

this case, MMI is often used to augment the usual interaction paradigm by giving the user more locative 

freedom. Specifically, users are not necessarily constrained to sit in a particular spot with their hands resting 

on a keyboard but may move around the environment. This is made possible by distributing sensing devices, 

such as the microphones that record speech, around the environment - or at least by making these devices 

wireless, offering a degree of untetheredness. 

Figure 1.2: Example of large screen multimodal interface (from Sharma et al. [100]). 

1.1.3. Applicability of MMI. A chief benefit of co-ordinating multiple modalities is the increased 

usability gained from compensating for any weakness in one modality with the strengths in others. For 

example, popular mobile phone manufacturers, such as Motorola, have included automatic speech recognition 

(ASR) software since the late 1990s to circumvent the difficulty of text input on a small keypad [41], or 

navigating through mènus on a small screen [46]. There is also widespread evidence that suggests a general 

subjective preference of users to interact multimodaIly. For example, in separate studies of map-based tasks, 

researchers found that aIl subjects spontaneously interacted multimodaIly, and that between 70% [28] [38], 

and 95% [79] of those subjects preferred multimodal interaction to its unimodal counterpart. 

Divergent approaches to recognition in MMI are discussed further in §2.2. 

1.1.3.1. Accessibility. Multimodal user interfaces also have ~mplications for accessibility, in particu­

lar for physically impaired individuals who may have only limited availability of their voice, hearing, sight, 

or motor control. Offering redundant pathways to information or control in software is also of importance 
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1.1. MULTIMODAL RUMAN-COMPUTER INTERACTION 

to "situationally impaired" individuals. For example, voice entry of one's credit card information to a tele­

phony system may be desirable in the home, but not in a public environment. Speech commands also become 

relevant to motorists who need to look up and dial a phone number while their hands and vision need to be 

engaged elsewhere. This same type of multimodal exploitation is found in operating rooms, where members 

of the surgical team can access patient information verbally, and receive this information aurally and visually 

to maximize comprehension in an aseptic environment. 

1.1.3.2. Accuracy & Biometries. More technically, integrating co-related information from concur-

rent cross-modal information streams provides a benefit in recognition accuracy, specifically in MMI systems 

that perform this integration early in the process. For example, if an MM! interpreter has evidence that a user 

is pointing towards an image of a house, this information can be used to suggest that an ambiguous spoken 

utterance is "this house" rather than "this horse". The error suppression achievable with a multimodal system, 

as compared with a unimodal one, can be in excess of 40% Relative Error Reduction (RER) [78]. 

Furthermore, in the sub-field of MMI concemed exclusively with the recognition process, information 

from modes extraneous to the interaction are used to disambiguate or more accurately recognize unimodal 

utterances. For example, recording a speaker's lips with video, and associating measurements of quadrature 

values in the video's optical fiow1 with acoustic features in an associated trained Hidden Markov Model 

(HMM) framework have demonstrated improvements in accuracy in speech recognition by at least 4% at 

Signal-to-Noise Ratio (SNR) = 5 dB and 13% at SNR = 10 dB [105] [106] [71] for connected digit gram­

mars, given baseline audio-only accuracy of 41 % and 58%, respectively. This differs from MMI in that the 

interaction mechanism is unimodal (eg. speech-only). 

Combining unique properties of speech that can help to identify users with information from video for 

face recognition or lip-reading has also proven to be a useful mechanism for advanced security via biometrics 

[29]. 

1.1.3.3. Complications. There are, however, complications in unifying various methods of interac-

tion, ranging from low-Ievel signal processing to high-Ievel semantic analysis. New modes added to a system 

have been shown to have a multiplicative effect on such things as ambiguity, computational complexity, and 

representation [8] [22]. AIso, since MMI is a relatively young field of research, there does not yet exist a 

small de facto set of technologies or methodologies that can conclusively be shown to dominate aIl others. 

One of the emerging themes in multimodal research involves the difficulty of re-applying techniques 

across application domains of potentially varying complexity. For example, multimodal discourse (possi­

bly with sorne virtual avatar) [115] might require sorne degree of integrated planning, whereas a map-based 

querying will not [78]. This disparity in task complexity can be seen as a limiting factor in the generaliza­

tion of multimodal techniques to new tasks, although distributed component models such as Multiplatform 

1 The optical fiow is defined as the distribution of apparent velocities in the movement of brightness patterns in an image. 
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[39] based on message passing between processes have recently been gaining in popularity to deal with this 

dilemma [18]. 

These issues, among others, are discussed throughout this thesis. 

1.2. Thesis Objectives and Contributions 

clàvius is a generic interpretation layer between users and sorne arbitrary software that they use. It 

deciphers what a user says and does, for example, and passes this information along to the appropriate appli­

cation. It provides a multimodallanguage-based integration engine within a generic framework that produces 

a structured semantic representation of user communication from raw data. Although its purpose is to recog­

nize multimodal phrases, it is also amenable to unimodal user input, such as standard text- or speech-based 

processing. 

This software was designed to meet the following broad goals: 

Flexibility: The core recognition system must minimize the number of assumptions as to the nature 

of the application, or class of user input with which it will eventually be used. 

Scalability: Augmentations to the abilities of the system must be made easily. This includes, for 

example, the ability to handle new types of input. 

Efficiency: Chapter 2 will show that the speed of recognition has been an ongoing problem in MMI 

research. Clavius must address this issue meaningfully. 

Structured semantics: Complex analysis of the meaning of phrases and sentences should be possi­

ble in order to draw inferences and constrain the process, as much as possible. 

1.2.1. Contributions. The general approach in Clavius uses graph-based data structures (§2.1) that 

encode sensory information, syntactic structure and semantic knowledge within descriptions of a user's in­

teraction with an application. The actual method used is a novel 'parsing' algorithm - the GS Aigorithm -

that integrates various approaches to multimodal interaction by means of a modular architecture. The GS 

Aigorithm, and the architecture built to accomodate it form the two main innovations of this thesis. Sorne 

specifie innovative aspects that overcome or address shortcomings in other work (see Chapter 2) include: 

Mutual information: : Input from one mode can be used to inform interpretation in other modes. 

For example, if a word is spoken with a simultaneous gesture to an area, the nature of that gesture 

can be used to infer what the speaker said. 

Distribution and collaboration: : Distributing the responsibility for different tasks across multiple 

machines or processing threads allows for adynamie, robust, and efficient system. 

Unified semantics: : Multimodal grammars allow a degree of semantic or world knowledge to be 

incorporated in the combination and interpretation of partial results. 
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Real-time recognition: : Interpretation takes place continuously as soon as new input is introduced, 

instead of waiting until sensory activity has ended (such as after a long pause). This means that 

the beginning of a sentence may be interpreted while the user is still uttering it. This is sometimes 

referred to as interactive parsing [108]. 

Interruptible Recognition: : At any time, Clavius may interrupt itself in order to return its best 

possible hypothesis, but may decide to deliberate further it believes that by doing so lt can improve 

the correctness of its estimate. 

Heuristics: : Since the problem of MMI is still in its infancy, and has many disparate approaches 

(see §2.2), a simple scoring paradigm that can unify various solution concepts (over various do­

mains) is employed. 

AutomatedLearning: : Clavius is highly customizable 'by hand', but is also amenable to training 

itself off-line according to interaction data. 

In Clavius, unlike many speech recognizers [65], the goal is not constrained only to complete and fully 

grammatical sentences (for formai approximations to naturallanguages). In fact, Clavius can also accept 

'sentences' that consist only of unexpected sentence fragments, but which still have internaI structure and 

meaning. 

1.3. Organization 

The rest of this thesis is organized into four chapters. Chapter 2 defines some necessary linguistic 

and mathematical background forming the foundation of this work. Chapter 3 then presents a system-Ievel 

overview of Clavius, describing component software structures and the fiow of information. This is fol­

lowed by a more detailed look at some of the algorithmic details of those component structures in Chapter 

4, inc1uding an exposition on the GS Algorithm and the modular behaviours it uses. Finally, Chapter 5 ex­

plores the properties of Clavius experimentally through the analysis of multimodal interaction data with a test 

application. 

Appropriate literature references are discussed where appropriate, according to subject. Since the con­

tent of the reference material is spread across fairly disparate domains, this provides a more logical progres­

sion through the thesis than having a separate chapter solely devoted to literature review. 

1.3.1. Syntax Used in this Thesis. Although there currently exists no concise standard for repre-

senting multimodal phrases textually, the convention in Table 1.1 will be adopted for the remainder of this 

document. Other conventions will be defined as their underlying concepts are introduced. Any parametriza­

tion of symbols will take the form of attribute-value matrices, defined in Chapter 2. 
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Feature Description Exarnple 

Speech Spoken words only This is thi". 

Speech + point gesture '.,. refers to the maximal extent of a pointing gesture, and its position in the string reflects its This'.,. is '.,. thi.!. 

temporal relation with spoken words. Any word or series of words underlined are semantically 

relaled 10 the nearesl '.,.. 

Speech + area gesture '.,. and ,/ refer to the start and end points of a gesture outlining or circling a 2-dimensional Look in th;" area '.,. ,/. 

area. Their placement in the string reflects their temporal relation with spoken words. Any 

word or series ofwords underlined are semantically related to the nearest ('.,.,,/) pair. 

Speech + symbolic ges- E9 x refers to a symbolk gesture, specified by the subscript X. This incorporates mimetic, Place E9 ",. : draws a pym-

ture referential and modalizing gestures. mld at the location of E9 6 . 

Table 1.1: Convention used to represent multimodal phrases textually. 
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CHAPTER 2 

Background and Related Work 

Before discussing the architectural and algorithmic details of Clavius, sorne fundamental concepts must be 

defined formally, in order to motivate design decisions. 

This chapter begins with a brief discussion of graph unification (§2.1), which serves as the fundamental 

operator of Clavius' grammar processor. It continues with a survey of existing approaches to multimodal 

interaction that diverge fundamentally over varying computational models (§2.2). From here, psychological 

aspects (§2.3) are discussed before concluding with particular linguistic features of multimodal interaction 

(§2.3.3). 

Further linguistic and mathematical background necessary for the comprehension of this thesis are de­

scribed in Appendix A. 

2.1. Features and Unification 

Constraint-based formalisms are typified in computationallinguistics by the use of complex structures 

to describe various features of words, phrases, and sentences. There are several advantages of this approach 

relevant to MMI. For instance, expressing linguistic and semantic information declaratively frees the gram-· 

mar from the control process, allowing for a greater degree of re-usability, should different combinations of 

modalities or mode-tracking software be necessary. Furthermore, expressing linguistic concepts structurally 

has generally led to smaller grammars than would be necessary otherwise [88]. This simultaneously helps 

reduce both the multiplicative effect of adding more modes on the size of a grammar, and also the generative 

capacity of that grammar, since irreconcilable differences in the topology or values of these feature structures 

can be used to prohibit combination of incongruous phrases or words in the search process. Reducing the 

size of the search space is a chief objective in multimodal research [49]. 

Pollard's Head-driven Phrase Structure Grammar (HPSG) [86], for example, is indicative of a constraint­

based formalism popularly applied to linguistics in the form of a special representation format calledfeature 

structures. 



2.1. FEATURES AND UNIFICATION 

2.1.1. Feature Structures. In Clavius, aIl user activity is described by collections of data structures 

called feature structures. A Feature Structure (FS) , over a set of features FEAT and a set of values VAL is a 

rooted, connected, typed directed acyclic graph (TDAG) (N, no, b, B) such that : 

• N is a finite set of nodes, 

• no E N is the root of the graph, 

• b : N x FEAT ....... N is a partial function. Specifically, the arc (or directed edge) bi = ((ni, Il» , nj) 

is a directed connection from ni to nj having feature Il> E FEAT . Here, in Iii, ni is the parent 

of nj, and nj is the child of ni. An arc of feature Il> from ni to nj is sometimes represented by 
• ---> • 

ni Il> nj. 

• B: N ....... VAL is a set oftuples (ni, v) assigning values v E VAL to nodes. B(n) = vis sometimes 

used to mean the value of node n is v. Values of nodes can be of any type (integer, character, ... ), 

but are compared bitwise to deterrnine equivalence. Anode can also have null value, À. 

A particular graph, qi A, is a complete specification of aIl variables in (N, no, b, B), distinguished from 

other graphs by its subscript. Each node ni in qi A can but does not necessarily have ta be associated with a 

value (i.e., IIBII :s; IINII). In fact, typically only the leafnodes (nodes without any out-going arcs), have an 

associated value. The notation ni ....... v refers to node ni having value v. Nodes without associated values are 

called ananymaus nodes. 

In general, Clavius allows only one arc of type Il> to lead out of any node ni. Formally, for any two arcs 

bj and bk leading from ni such that bj = ((ni, Il>j) , nj) and bk = ((ni, Il>k) , nk), if Il>j = Il>k, then it must 

follow that nj = nk, and therefore that bj and bk are the same arc. In certain very specific instances, however, 

issues of implementation require that this constraint be waived, at the expense of additional computational 

structure, as discussed in §3.3.1. 

The size of a particular feature structure 1 qi al is defined as the number of directed edges present in qi a. 
In §A.l.l.l it was shown thatif qia hasasetN ofnodes, then INI(I~I-l) ;::: lqial ;::: INI-l. Thisprovides an 

important processing bound, namely that aIl of Clavius' algorithins that traverse graphs are bounded above 

by O(INI 2). This limit can in fact be lowered, as will be described later. 

AlI non-root nodes ni, i = l..(IINII - 1) must be reachable from the root node no. That is, there 

must be a path from no to nj, which is recursively defined as a sequence of arcs, S = {bo ... bj}, such that 

if bo = ((no, Il>i), ni), then either ni = nj (for sorne Il>i), or else there exists sorne path from ni to nj. The 

path from ni to nj is sometimes represented by ni """' nj, where ni is called the ancestor of nj, and nj is the 

descendant of ni. 

Furthermore, aIl paths in graph qi must be acyclic, meaning that there does not exist any path Sab in qi 

such that two arcs exist where ba = ((na, Il>a), nk) E Sab and bb = ((nb, Il>b), nk) E Sab, and ba =1= bb. In 
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2.1. FEATURES AND UNIFICATION 

Figure 2.1: An example feature structure graph (N,nn6,O) where N = {no,nl,n2,n3,n4}, 
nr = no, 8 = {((nO,<Pa),nt},((nl,<Pb),n2),((nO,<Pc),n2),((n2,<Pd),n3),((n2,<Pe),n4)}, and 0 
{(n3, Ox), (n4, Oy)} 

other words, for any path in 'li, no node nk in that path can be entered more than once. That is not to say 

that nodes in 'li cannot have more than one parent, only that the parents of these nodes cannot also be their 

descendants. Nodes with more than 1 parent are called re-entrant. Although formalisms for cyclic feature 

structures exist in other disciplines such as uncertainty in artificial intelligence [90], these complicate issues 

of grammar representation and execution and therefore are almost never used in computationallinguistics. 

A visual example of a feature structure (typed directed acyclic graph) is provided in Figure 2.1, with one 

re-entrant node (n2). Further examples of feature structures that represent linguistic entities (via grammar 

rules), are provided in §2.1.3. 

2.1.1.1. Subsumption of Feature Structures. A morphism, g, in the context of feature structures is a 

mathematical operator that maps each node n in one graph to sorne node m in another, written as g(n) = m. 

A feature structure 'lia = (N, no, 6, 0) is a substructure of another 'lib = (N', n~, 6', 0') (written 'lia S; 'lib) 

if 

(i) "In E N and <1> EFEAT, if :J6(n, <1», then :J8'(g(n), <1» and g(8(n, <1») = 8'(g(n), <1». 

(ii) "In E N, O(n) = O'(g(n)) 

Note that normally sorne hierarchical operator other than '=' is defined for point ii), but this is not 

the case in Clavius. This basically implies that aIl the topological and value information of one graph is 

'contained' within another. 

Feature structures can also be partially ordered according to the degree of their information content by a 

relation called subsumption. Subsumption is defined syntactically by graph morphisms that map aIl nodes of 

one graph to those in a subgraph of another. That is, a feature structure 'lib (defined above) subsumes another, 

'lia, (written 'lib ç 'lia) , if and only if 'lia S; 'lib and g(no) = n~ for some morphism g. Namely, 'lia is a 

substructure of 'li b, where the root of 'li a is mapped ta the root of 'li b by the same morphism that defines that 

substructure. 

11 



• [xl Il · [1 ==. [xl • [xl Il. [xl== • [x] 

· [] Il· [] ==. [] • [xl Il. [YI==Nul 

"'-cIl,--'P,Il-cIl,-"'P, == "'-cIl,--'P3 

If '1', li '1',='1'3" Null 

2.1. FEATURES AND UNIFICATION 

"'-cIl,--'P,Il-cIl,-"'P, = NUll 

if'l',li '1',= Null 

Figure 2.2: Prototypical unifications. In a) aIl atomic unifications succeed except those having different 
non-null values. In b) the resulting graph is the union of the information in thecomponent graphs. In c) and 
d) if outgoing arcs of component graphs have the same feature, the respective subgraphs must also unify. 

These are important relations that will be discussed further in §2.1.3 and §4.1.3. 

2.1.2. Unification. Unification in NLP was developed separately and concurrently by Kay [53] [54] 

and Colmerauer [24], who approached it from slightly different purposes. Its use in Clavius follows the 

former more closely in that it concentrates on unification of structure rather than value terminaIs. 

Unification, denoted by the operator U serves as the fundamental operation in the Clavius search process. 

It serves both as an amalgamator of information in two distinct feature structures, and as a boolean test as to 

whether those structures can be combined properly. Since aIl user activity is represented by these structures, 

described more concretely in §2.1.3, it is important to be able to combine these, so that graphs representing 

words can be combined into graphs that form phrases and sentences. 

The U operator takes two FSs as arguments and produces a third. That is, \II e = \II A U \II B = 

(N(C), n~c), 8(c), O(C») means that \Ile is the unification of \II A and \II B. It is a recursive operator and has the 

behaviour simplified in Aigorithm 1, given \II A = (N, no, 8, 0) and \liB = (N', n~, 8',0'). 

In the above, SUBGRAPHAT(n) retums the subgraph rooted at node n, ROOTOF(\II) retums the root 

node of graph \II, and COPyGRAPH(\II) retums a new copy of the graph \II (that is, an exact morphism of 

graph \II). At the end of a successful unification, the resultant graph will subsume both of the input graphs, 

and will generally contain more structural and semantic information. For example, if two graphs can be said 

to describe a certain word, then their unification will provide more information about that word, if such a 

combination is possible. For clarification, examples of unification are shown in Figure 2.2. 

Unification is obviously a commutative operation such that \Ile = \liA U \liB = \liB U \liA. This is 

contrasted with similar graph-combination algorithms in other multimodal systems, namely SMARTKOM[3], 
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Aigorithm 1: UNIFY 

Data: feature structures W A and WB 
Result: Wc = 'l'AU WB 
begin 

if IINII = IIN'II = 1 tben Ilw A & WB are atomic 

l wc <- unify...Atomic (WA, WB) 
return 'l'c 

if IINII = 1 or IIN'II = 1 then Iionly one of {w A, 'l' B} is atornic 

l 'l'c <- Unify..Mixed ('l'A, WB) 
return Wc 

Il Both 'l'A and 'l'B are complex feature structures 
for ail 8A = ((no, <1» ,ni) ,8B = ((n~, <1>') , n~) S.t. <1> = <1>' do Ilcheck arcs of aIl cornrnon 
outgoing features 

Il If the nodes they point to unify, success, otherwise fail 
'l'a <- SubgraphAt (ni) 
Wb <- SubgraphAt (nD 
'l'c ;- Unify ('l'a, 'l'b) 
if Wc = 0 then 
L return 0 

else Il Attach the subgraph to Wc 

1 

ne;- RootOf (we) 

create 8c = (( n~e) , <1> ) , ne) 

Il Copy in aIl subgraphs led to by arcs not common to WA and 'l'B 

for ail 8A = ((no, <1», ni) where l-W = <1> S.t. 8B = ((n~, <1>'), nD do 

l ne <- CopyGraph (SubgraphAt (ni)) 
create 8c = (( n~e), <1> ) , ne) 

for ail 8B = ((n~, <1>'), nD where l-W = <1> S.t. 8A = ((no, <1», ni) do 

l ne ;- CopyGraph (SubgraphAt (nD) 

create 8c = (( n~e), <p') , ne) 

end 

Aigorithm 2: UNIFY _ATOMIC 

Data: feature structures W A and 'l' B 

begin 

end 

if 8(no) = À then 

L 
wc;- WB 
return Wc 

if 8'(n~) = À then 

L Wc ;- W A 
return Wc 

if 8(no) = 8'(n~) then 

L 
Wc <- W A 

return Wc 

Il nodes have non-null, non-equal values 
return 0 
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Aigorithm 3: UNIFY..MIXED 

Data: feature structures W A and WB 
begin 

if IIN'II > ltben only W A is atomic 

l if O(no) = À then 

L 
Wc ~ WB 
return Wc 

else if IINII > 1 then only WB is atomic 

l if O(nô) = À then 

L 
Wc ~ WA 
return Wc 

return 0 
end 

2.1. FEATURES AND UNIFICATION 

where parse graphs are combined according to 'overlay' - a non-commutative approximation of the chart 

parser described in §2.2.3. The 'overlay' method conditionally unifies utterance parses against background 

knowledge or default expectations. This background knowledge is thereby used to automatically fill in for 

unspecified components of a partial parse. 

Other common divergences from standard unification includes type-value hierarchies (so that values in 

o can be subsumed), and the use of other graph-structured data as semantic frames-of-reference. These are 

not employed in Clavius, especially in the latter case, so as to minimize the use of 'external' information 

during graph recombination. 

2.1.2.1. Implementation of the Operator U. The algorithm that implements U accepts two feature 

structures, W A and WB, and returns either an empty graph and notification of error, or the unification of the 

two. The Clavius implementation is recursive and non-destructive, so that the two input graphs are preserved 

unchanged after unification. Other implementations will sometimes avoid a processing bottleneck incurred by 

the presence of re-entrant nodes by implementing a destructive version of unification that is at least linearly 

proportional in time to the size of the larger of the two graphs[52]. This, however, typically requires that 

copies be made of at least one of the input graphs, so that the originals are preserved. This results in a lower 

bound in time that is linearly proportional to the size of both graphs, or at best of the smallest, if such a 

distinction can be made in 0(1). 

The Clavius implementation of Algorithm l, is 0 (max (1 W AI, 1 WB 1)) since every edge of each graph 

is visited exactly once on successful unification. The best case, however, is [2(1) which represents merely 

the length of one path in each graph from the root node to a value, since the algorithm terminates as soon as 

an inconsistency is detected. In the typical case this is a much more efficient approach than that presented 

by Jurafsky and Martin [52] because, for reasonably complex grammars, the majority of unification attempts 

will fail. 
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s 
NP 

VP 

Figure 2.3: Simplified example graphical representation of the grammar rule S f- NP VP, with the added 
constraint that the number (NUM) of the noun phrase and verb phrase must agree. 

In Clavius, each grammar r is associated with a sorting function, {3, that uniquely orders the set of aIl 

features in a grammar (for instance, by the order that they first appear in r). This ordering is essentially 

arbitrary and serves only to simplify implementation details. If feature <l>i precedes arc <l>j according to {3, 

this is written <Pi -<'f3 <Pj. Since in general outgoing arcs are constrained from anode to have distinct features, 

{3 can also be said to order the arcs from anode within sorne graph \If, although again this is purely pragmatic. 

In addition to internaI (but arbitrary) ordering of graph arcs, the other unique aspect to the implemen­

tation of U in Clavius is its handling of re-entrant nodes. SpecificaIly, during unification, a hash table (RE­

ENTRANTHASH is generated on the ft Y keyed by nodes from input graphs \If A and \If B) tracks their associated 

node in output graph \Ife. For instance, if nx is a re-entrant node in \If x, and \If x and \If y are being unified 

to create \Ifz, then RE-ENTRANTHAsH{nx } = n z gives the node n z E \Ifz that corresponds to nx. This 

hash is useful in several ways, especially since it avoids repeated traversaIs of the same subgraph and keeps 

re-entrant nodes in input graphs from being translated to multiple nodes in output graphs. 

2.1.3. Unification Grammars. AlI lexical-level terminaIs (spoken words and gestural atoms) in 

Clavius are represented as DAGs. Furthermore, aIl grammar rules such as sorne ith rule ri S f- NP Vp l are 

represented by DAGs, as exemplified in Figure 2.3, and discussed in §3.3.1). Therefore, parsing2 consists of 

localized unification of grammar-rule graphs with either lexical terminal graphs, or sorne other constituent­

level graph. This process is elucidated in Chapter 4. 

There are several advantages to using unification of feature structures as a methodology for multimodal 

language parsing, sorne of which are described in the following subsections. A common representation 

paradigm for both grammar rules and potential parses of user input simplifies the implementation, and allows 

for subsumption and substructures to be taken advantage of by the GS Aigorithm. 

1 This rule states that a sentence (S) consists of a noun phrase (NP, ex. "the Force") and a verb phrase (VP, ex. "is with you") 
2See Appendix A for more background. . 
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2.2. DIVERGENT APPROACHES IN MMI 

2.1.3.1. Agreement. Various agreement phenomena in English constrain the lexical morphology 

(§A.2.1) in order to help partially distinguish grammatical from ungrammatical phrases. For example, present­

tense verbs will often take a terminating -s if their subject is third-person singular (eg. this train leaves), but 

not if the subject has sorne other form (eg. these trains leave , Ileave ). The problem is further exacerbated 

by whether the noun is nominative (l, ... ) or accusative (me, ... ), resulting in an explosion in the size of any 

representational grammar. 

The solution is to parametrize grammar rules, and to use these extra arguments as constraints. For exam­

pIe, S +- NP(sing) VP(sing) can be used to signify that both the noun and verb phrases have to have singular 

person. Agreement between information in disparate nodes becomes especially relevant in cons training the 

search. For instance, one may wish to prohibit unification of a gesture towards an image of a single virtual 

object with a spoken plural noun phrase such as "these objects". 

2.2. Divergent Approaches in MMI 

In the few decades since Bolt's seminal work (§1.I), there has not yet emerged a single paradigm that 

accommodates all potential uses of multimodal interaction, or all theoretical methodologies thereof, despite 

sorne vary broad recent attempts by the W3C to create a unified standards base [25]. Varying techniques 

have been applied to solving the problem of combining information across disparate modes such as nearest­

neighbour temporal alignment, neural networks [27], salience measurement [33], and biologically-inspired 

rhythm tracking [114]. 

Several additional divergent formalisms that are more relevant to the development of Clavius are dis­

cussed in subsections §2.2.1 through §2.2.4, below. 

2.2.1. Semantic Fnsion. Given the availability of unimodal speech and gesture recognizers, a pop-

ular methodology has simply been to combine the information held in the 'best' unimodal hypotheses of 

utterances after the facto For example, once a speech recognizer has a list of its n-best interpretations of a 

sentence, a multimodal component may attempt to cross-correlate their component information with com­

plementary information in unimodal gestural interpretations from an independent tracker at the utterance 

level. 

An increasingly popular approach to this integration process has been to merge attribute/value data 

structures recursively [112] according to predefined rules, although the exact approach used to correlate such 

complementary information varies on the representation schemes of the recognizers used. Such a method­

ology, though, invariably depends on complete sentence-Ievel hypotheses to be determined before hand, 

requiring that such processing be done only after an utterance has been completed. The implications of using 

a top-down approach as a means of rectifying problems of accuracy are further compounded by the lack of 

shared processing across modes that could greatly refine or direct the search process during its initial pass 
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2.2. DIVERGENT AI>f>ItOACHES IN MMI 

[101]. Integration at the semantic level can also be restrictive, especially if there is a fundamental lack of 

understanding of the human speechlgesture production mechanism. Despite these limitations, such systems 

can be trained very easily on uni modal data, which are more prevalent and easy to collect 

Classic examples of systems based on semantic fusion include Put That There [14], ShopTalk [21], 

QuickSet [22], and CUBRICON [73]. 

2.2.2. Prosodie Co-Analysis. Pitchlaccent association in English often underlines discourse-level 

aspects of information ftow. The fundamental frequency, Fo, is the physical aspect of speech corresponding 

to audible pitch. inversely derived by the time between two successive glottal closures [40]. Efficiently 

estimating Fo often involves counting zero-crossings of the speech signal within short time periods, although 

a more accurate method is to take the inverse Fourier transform of the energy spectrum 18 (eiw ) 12 [77]. 

The shape of the Fo contour can be used to decipher the delimitation of phrasaI units, but more impor­

tantly can be used by the speaker to emphasize certain words, thereby shifting their semantic content [76]. 

For instance, by shifting emphasis on the end of the phrase Ifs the baker, Mister Jones., the speaker either 

informs the listener as to the identity of a third-person baker in the appositive case, or merely inftects as to 

the person being addressed in the vocative case, as demonstrated in Figure 2.4. 
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Figure 2.4: Sentence meaning as a function of Fo contour (frequency vs. time) for appositive and vocative 
utterances (from O'Shaughnessy [76]). 

This approach has been used statistically in MM! to provide a model relating the temporal alignment 

of active hand gestures to words having pro minent speech segments (ex. the word "this" in "erase ~ this") 

[57]. It is adopted to Clavius as discussed in §4.12. 

2.2.3. Deterministic Unification. Unification of feature structures (§2.1) is often implemented in 

MMI within the context of semantic fusion, although this is not theoretically necessitated. It differs slightly 
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2.2. DIVERGENT APPROACHES IN MMI 

from common semantic fusion, though, in that it restricts aIl unimodal recognizers to be represented within 

a common feature structure framework, typicaUy a unification grammar [50][51] [43]. The prototypical 

approach to multimodal parsing with unification grammars is shown in Aigorithm 4 (from Johnston [49]). 

Algorithm 4: CHARTPARSE 

begin 
while 3 edge in AGENDA do 

l 
remove best edge from AGENDA, and make it currenLedge 
for each EDGE E CHART do 

l if currenLedge n EDGE = 0 then 

L create set NEWEDGES = (u currenLedge *EDGE) U (u EDGE*currenLedge) 
add NEWEDGES to AGENDA 

add currenLedge to CHART 
end 

Obstacles to this approach have included computational complexity (effectively aU admissible edges are 

created) and tractability. Chapters 3 and 4 discuss how these obstacles, and others met by other implementa­

tions, can be overcome within the unification model in Clavius. 

2.2.4. Weighted Finite State Machines. PartiaUy in order to overcome perceived issues of compu­

tational complexity in unification-based parsing, sorne research groups abandoned this approach in favour 

of finite state machines [50] [51]. Finite state machines have been applied extensively to many aspects of 

language processing, including phonology, morphology, chunking, parsing, machine translation, and general 

speech recognition. Their adaptability from data, their effectiveness of decoding, and their compositional 

calculus make them an attractive general-purpose representational framework. 

In a multimodal interface with n modes, a finite-state automaton over n+ 1 tapes is necessary to construct 

a joint interpretation, where the n + 1 th tape represents the semantic output, which may take the form of a 

compositional predicate calculus. Fortunately, such machines can be encoded directly from context-free 

grammars, but they also abandon several advantages of feature structures - namely the ability to represent 

complex semantic information. 

_______________ E~1~~~M~d:~. __________ --

Figure 2.5: Transducer relating gesture, G, and speech,S, to meaning, M, T: (G x W) --> M (from Johnston 
and Bangalore [50]). 
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2.3. PSYCHOLOGICAL ASPECTS OF MULTlMODAL HUMAN-HUMAN COMMUNICATION 

Rand! Ann Movement 

Gestures Unintentional Movement 

---------------Manipulative Communicative 

---------------Acts Symbols 

~ ~ 
Mimetic Deictic Referential Modalizing 

Figure 2.6: A hierarchical ontology of human gesticulation. 

2.3. Psychological Aspects of Multimodal Human-Human Communication 

Singular conceptual representations - especially those related to spatial descriptions - can be manifested 

in variety of combinations of speech and gesture [59]. For instance, Cassell and Prevost [19] show that 

roughly 50% of the meaningful semantic components of spatial descriptions between humans are expressed 

either by speech or by gesture exclusively while the other 50% were encoded redundantly across both. This 

suggests, at least, that humans regularly split conversation over multiple channels - but in which situations 

does this occur, and how is it useful? 

Figure 2.6 shows a hierarchical decomposition of human gestures according to their usage and meaning 

(from Pavlovic [83]). Deictic gestures, in particular, are generally used in conjunction with speech to indicate 

an object or location, given the context of the speaker's frame of reference. This les sens the cognitive load 

on both the speaker and hearer, especially in spatial descriptions [70], in accordance with Zipf's Principle of 

Least Effort [121]. Specifying the identity ofreferred objects in this way produces shorter sentences requiring 

fewer assumptions to be made as to the know ledge of the hearer. Gesticulation might also be use fui in helping 

the speaker conceptualize the subjects of their communication, and to retrieve the appropriate lexicography in 

their description [60]. That is, hand and arm movements seem to facilitate both spatial working memory and 

speech production [55]. Naturally, encouraging such an important verbal aid in human-computer interaction 

should therefore be desirable. 

2.3.1. Anaphora. Series of actions are not often performed in isolation and users may typically need 

to refer to objects repeatedly in subsequent commands. This is especially pronounced in NP/pronominal 

relationships across sentences, as in : 

Put ~this, and ~this in ~ here ./. Colour them blue. 
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2.3. PSYCHOLOGICAL ASPECTS OF MULTIMODAL HUMAN-HUMAN COMMUNICATION 

where the noun phrase (NP (PRpthis) and (PRpthis)) refers to the same collection of objects as 

(PRpthem). A multimodal system must be able to infer equivalence of this type if it is to take advan­

tage of its users' natural speaking patterns. Approaches to this phenomena in NLP have included simple 

surface-Ievel heuristics [10] and deeper use of semantics [42]. In MMI, restricting the language to query or 

command-based interaction has allowed researchers to implement simple context trees to localize information 

[21]. 

2.3.2. Form vs. Meaning. In speech, the distinction between lexical and sentential meaning is that 

the relation between the word form and its semantic realization is arbitrary in the former, and compositional 

in the latter. For instance, the lexical meaning of dog, chien, and hund are all the same, though their surface­

structure differ. On the other hand, the difference sentential meaning of "the man ate the lobster" versus "the 

lobster ate the man" depends on relative ordering of constituents to instantiate verb/object arguments for the 

verb. 

Psycholinguistic [68] and engineering [56] studies suggest that even deictic gestures also do not exhibit 

a one-to-one mapping of form to meaning. Mu!timodal interaction in general deals with highly ambiguous 

input spaces, where the emphasis must lie in functional grammatical constructions. 

2.3.3. Peculiarities of Multimodal Language. A significant dichotomy between multimodal and 

unimodal spoken language is the use of locative constituents, which are almost always instantiated as prepo­

sitional phrases depicting location, as in HIleft the cake out [in the rainhoc". Surprisingly, sorne sources 

suggest that the canonical English S-V-O-LOC 3 word order is almost completely supplanted in penlvoice 

interaction by a LOC-S-V-O word order. Two separate research teams found corroborating evidence that 

for a fixed set of speakers, - 95% of locative constituents were in sentence-initial position during multimodal 

interaction, compared to -96% in sentence-final position (as in the example above) for unimodal speech 

[80] [79] [7]. The Clavius data collection, described in Chapter 5, confirms higher rates of sentence-initial 

locatives, though generally within imperative command structure. 

2.3.3.1. Conversational Multimodality. As previously mentioned, use of gesture in multimodal con-

versation generally leads to simpler sentences. This can come with the cost of an added degree of dysfluency 

in practise, however. Specifically, vocative dysfluencies ("uh", "err", ... ) must be considered in addition to 

gestural dysfluencies - namely hesitations or false-starts during gesticulation. 

Current systems implementing multimodally conversing virtual agents, while still in very early devel­

opment, have resulted in generally encouraging or favourable impressions by test users, although these still 

appear to be most taken by the novelty of MMI [11]. 

3 SUBJECT- VERB-OBJECT-LOCATIVE 
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CHAPTER 3 

Clavius System Architecture 

Clavius is a generic multimodal dialogue system that employs an extensible best-first search strategy over 

stochastic/semantic data structures in order to multiplex multiple streams of human activity into a control 

stream to the application to which they refer. 

This chapter covers an architectural overview and a component analysis of the system. It begins with 

broad usage scenarios (§3.1) and a high-Ievel, structured decomposition of software components (§3.2), fol­

lowed by a more pragmatic discussion of their functionality (§3.3 - §3.8 ). An overview of the deployment 

methodology (§3.9) is then provided,and is concluded by notes regarding the general approach to software 

engineering (§3.9.1). Algorithmic details, specifically those related to mathematical and linguistic theory, are 

covered in Chapter 4. 

3.1. Towards GenerÏC Multimodal Understanding 

The purpose of Clavius is to act as an interpretation layer between an arbitrary software application and 

its users. Clavius is the result of an effort to combine sensing technologies for several modality types, speech 

and video-tracked gestures being the most important among them, within the immersive virtual enclosure 

[15] [94] at McGiIl University's Shared Reality Environment, shown in Figure 3.1. 

Although Clavius is not constrained to certain modality combinations, application types or interaction 

schemas, it is expected to be used generally in command-based interaction, where the stereotypical usage 

scenario involves the relocation and manipulation of virtual objects, as exemplified by the sequences in Table 

3.1. These consist of simple commands on objects, and their immediate operation by the application. 

3.2. Systematic Component Decomposition 

Figure 3.2 shows a high-Ievel breakdown of the most significant software components of Clavius, and 

the communication paths between them, inspired initially by work from Neel and Minker [23], and discussed 

further in the indicated sections. Note that, although aIl components within Clavius are customizable at 
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User Input Vlrtual Environment Application Loglc 

Figure 3.1: The Shared Reality Eilvironment. 
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Table 3.1: Example interaction sequences with a virtual blocks world using speech coupled with pointing 
gestures. 

startup by an XMLI-based configuration manager (§3.4), the chief operating charaeteristics of language and 

behaviour are determined by the application designer at runtime extemally from the core system, making it 

highly customizable and scalable. Approaching the problem in this way also helps to localize functionality 

into smaller modular components [72]. 

Subsections §3.2.1 to §3.2.3 give a simplified hypothetical chain of operation through the system be­

tween the time sensory data is first introduced, and the eventual construction of a valid hypothesis for the 

intended meaning of a user's utterance. In the example covered in the following subsections, it is assumed 

that a hypothetical user has uttered the multimodal phrase "put "-"this "-"here" in order to move a virtual 

object around an immersive environment. 

1 eXtensible Markup Language. 
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3.2. SYSTEMATIC COMPONENT DECOMPOSITION 

Figure 3.2: Simplified information ftow between fundamental software components in Clavius. Rectilinear 
and ovoid elements represent static objects and dynamic threads, respectively. Hashed arrows represent 
network communication. 

user actMty sellsor TRACKER network SEARCH SPACE 

'j 'j '1' 'l' 

Figure 3.3: During tracking, user activity is sensed and analyzed by the tracker before being tokenized and 
sent to Clavius' search space. 

3.2.1. Stage 1 : Tracking. Trackers are independent programs that sense and monitor a particular in­

put modality, such as speech, and perform rudimentary interpretation of activity in that modality. Specifically, 

a tracker will classify a given input signal into one of the equivalence classes provided to it by a 'lexicon', or 
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3.2. SYSTEMATIC COMPONENT DECOMPOSITION 

vocabulary. For example, a speech tracker monitoring the signallevel on a microphone recognizes individual 

words, and a gesture tracker monitoring video will recognize particular gestures. 

These interpretations are sent in the form of fully qualified graphs, or 'tokens' to Clavius for further pro­

cessing over a TCPIIP network connection according to a pre-determined XML format (see §3.5.1). Trackers 

are responsible for providing each token with a likelihood score. Given the above example, if the speech 

tracker is only 80% confident that a word it hears is put, then the token it sends to Clavius will have a score 

of 0.8, as exemplified by \[1 h in Figure 3.3. 

A collection of T trackers monitor user activity asynchronously and independently of one another over 

the M modalities used by an application. Typically, T = M, so each modality is monitored by a unique 

dedicated tracker, but Clavius allows for T > M, so that certain modalities can be monitored by more than 

one tracker. Implications of this capability are discussed in §3.5.3. Trackers will typically be implemented as 

stand-alone programs run on machines directly attached to appropriate sensing equipment, and they can be 

implemented in any language capable of TCPIIP network communication. 

This component is covered in greater detail in §3.5. 

3.2.2. Stage 2 : The Searcher. Upon the receipt of token \[1 h for put, Clavius inserts this hypothesis 

into the searcher. The Searcher consists of specialized data structures and the concurrent operators acting 

upon them to determine the best interpretation for an utterance, given the input. The search space is com­

posed of numerous substructures containing hypothetical partial parses of which a subset potentially lead to a 

sentence-Ievel interpretation. These partial parses are built according to a specialized multimodal grammar, 

based on the input tokens provided to the search space by the trackers. In the ongoing hypothetical scenario, 

if at this point three tokens have been inserted into the search space by the trackers - namely \[1 h : (VB put), 

\[1 i : (POINT '\.), and \[1 j : (DT this), then the task of combining these into grammatical phrases falls upon 

two concurrent processes: the generalizer and the specifier. 

3.2.2.1. Genera/ization and Specification. aeneralization provides the 'bottom-up' component of the 

as Aigorithm, according to the terminology of Jurafsky and Martin [52]. This process takes partial parses 

from the search space and attempts to attach these to the right-hand sides (RHS) of grammar rules. For 

example, as shown in Figure 3.4, if r r : ObjectReference <- DT POINT is a rule in the grammar, and the 

parse \[1 j : (DTthis) exists in the search space, then a new parse \[1 k : (ObjectReference(DT this) (POINT)) 

is created that is then put back into the search space. Naturally, this process leads towards sentence-Ievel 

parses. 

Similarly, specification provides the 'top-down' component of the as Algorithm. This part of the pro­

cess combines two partial parses having the same top-Ievel category in order to amalgamate their respective 

information content. Continuing with the above example, at this point the generalization process has taken 

place as shown in Figure 3.4, and the partial parse \[1 k it has generated exists within the search space. AIso, a 
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this ", this ", 

Figure 3.4: Simplified Generalisation and Specification examples. 

similar process has gone into producing Wl : (ObjectReference(DT)(POINT ",)) in the search space - that 

is, it is the result of another generalization step based on the input token for the gesture "",". The Specifier 

then combines W k and W l to form a new partial parse W m which combines the information of the two, as 

shown in Figure 3.4. 

The combined process of the GS Aigorithm is described in detail in §4.1. Both generalization and 

specification choose which partial parses to consider based on the individual scores that aIl such graphs 

possess, discussed below. 

3.2.2.2. Memory Management. Partial parses remain in the search space indefinitely unless forcibly 

removed. A memory manager decides if any parses should be removed, and if this is the case - it performs 

the expulsion. For example, if the speech tracker from Stage 1 has also produced hypotheses that, instead 

of "put", the user said "pat" or "pot", then graphs representing these alternatives may be deleted when it 

becomes clear that neither will form part of an acceptable sentence-Ievel hypothesis. This process is described 

in greater detail in §4.1.5. 

3.2.3. Stage 3 : Application Interface. While the three threads of the Searcher work to form par-

tial parses, a fourth thread - Cognition - monitors the potential sentences that they have so far produced. 

Given various types of ambiguity, there may be several divergent explanations for a user's input. For exam­

pIe, if there is sorne acoustic or sensory noise obscuring the input, Cognition may need to decide between 

hypotheses "Cut his ", hair." and "Put this ".,. there ".,.". 

At a certain point, Cognition will select the latter from the search space and send this accepted hypothesis 

to the application in the form of a graphical structure simplified in Figure 3.5. The application, on receiving 

this interpretation, will perform whatever action is appropriate - such as moving the indicated object to the 

indicated location. This is normaIly also accompanied with a change of state information shared between 

Clavius and the application. 
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this ~ here ~ 

Figure 3.5: A simplified grammatical expansion of the phrase put ~this ".here. 

Further detail on the engineering aspects behind each component are provided in the sections below. 

3.3. Data Representation 

The fundamental data type in the Clavius framework is the directed acyclic graph, whose characteristics 

were introduced in §2.1. Every node in a graph has reserved memory space to hold arbitrary data types as the 

atomic 'value' at that node. This is accomplished by aIlocating with the void *, and encapsulating the data 

type and size within each graph node. 

Important data types include: 

ERRCODE: is an 8-bit mask that is the return value of almost aIl functions. OxO 0 represents func­

tion success, OxFF represents function failure (error), and OxO 1 represents nuIl output. 

SCORE: this is a double-precision floating point that is used in the ordering of aIl partial parses. 

TIME: the time format is not strictly enforced by Clavius, but must be consistent between aIl track­

ers and must be amenable to ordering using the strcmp string-comparison system calI. In prac­

tise, time has been represented by an integer string of the form "s:u", where sand u are the 

seconds and (remainder) microseconds from Epoch (00:00:00 UTC, January l, 1970). 

3.3.1. Clavius-specific constraints on DAGs. Certain assumptions were made in the implementa-

tions of graphical structures and associated operators in Clavius, based on the fact that these structures would 

primarily be used to represent phrases and words. Therefore, certain features are required to be present in aIl 

graphs in the search space. Those features, and the meaning of their values, are: 

cat: The grammatical category associated with the graph. 

score: The raw score associated with the graph. 

time: The time spanned by the encompassing graph. 
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content: Any semantic variables associated with this graph. The value of this feature is an arbitrary 

subgraph of the grammar engineer's design - and can point to a leaf node of null value. Its 

presence, however, is assumed for the purposes of several utility algorithms. 

The value of the time feature is an internaI node rooting of a binary tree having subfeatures t..start and 

Lend, as indicated in Figure 3.6. 

~ 1126065011.718976 

_ lime . __ ~r;f"Lstart 
~ 

Cenci 

U 1126065013.832910 

Figure 3.6: Required structure of TIME feature (with example time values). 

AdditionaIly, aIl graphs implementing grammar rules are required to include the following arc features: 

rhs: This arc points to an internaI node representing the set of constituents on the right-hand side 

(RHS) of the IUle it represents. 

constituent: A constituent of a grammar rule is an element of the RHS of a rule, such as B and C 

in A t- B C. To represent multiple constituents in a feature structure, an exception to the regular 

condition that aIl outgoing arcs of an internaI node have distinct features (<Pi i= <Pj) (§2.1.1) is 

necessary. Therefore, the RHS node nj (bi = ((ni, RHS), nj)) can have multiple outgoing arcs 

of type CONSTITUENT, for each element on the RHS of the rule. 

Certain modules associated with the scoring of partial parses require that additional constraints be placed 

on the structure of DAOs. These are discussed where appropriate in sections §4.5 and §4.l O. 

3.4. Configuration Management 

, AlI software components query a central configuration manager that is instantiated at runtime with 

command-line parameters and a specified XML-based configuration file format. AlI configuration data is 

maintained in key-value pairs for fast hash-based retrieval. Among the important system-Ievel configuration 

details are the IP network addresses of aIl components, the location and login details (username/password) 

for aIl relevant databases. Other configuration details are described where appropriate throughout this thesis. 

3.4.1. Multimodal Grammars. The most significant configuration of Clavius' run-time is the gram­

mar, which is also specified in XML format by the interaction engineer. This grammar is essentially an 

order-invariant list of grammar mIes, as shown in the example Clavius grammar in Appendix B. 
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3.5. Input and Tracking 

As described in §3.2.1, trackers are implemented separately from Clavius. Thisapproach was taken 

specifically to allow alternate trackers to be swapped in and out without altering the complex internaI structure 

of Clavius. Trackers will typically be modifications of existing software that have been designed for specific 

sensory applications. 

Each tracker is instantiated independently of Clavius, and must be active and awaiting input when Clav­

ius is started. AlI device driver handling is performed by the tracker, which is also responsible for the scoring 

of its own hypotheses, according to its own lexicon and configuration. 

3.5.1. Communication Protocol and Lexica. Lexica are specialized vocabularies in Clavius that 

de scribe 'words' in terms of structured argument/value pairs. These are specified in XML, as exemplified in 

Figure 3.7, and serve as the primary run-time descriptor for trackers. 

Trackers essentially select from the provided lists of lexical entries to describe their monitored input, 

and send the appropriate clav_token XML elements to Clavius over TCPIIP. These XML elements can 

optionally be compressed for network transmission, though this is not necessary. The format of the received 

tokens is validated by Clavius upon receipt according to the same XML lexica used to configure the trackers. 

In cases where arguments are not specified by the lexicon - such as the (x, y) co-ordinates in the example 

in Figure 3.7 - the tracker is also responsible for filling these with appropriate values. 

<clav_token> 
<mode> SPEECH </mode> 
<cat> DT </cat> 
<num> s </num> 
<word> a </word> 

</clav_token> 

<clav_token> 
<mode> MOUSE </mode> 
<cat> DEIXIS </cat> 
<x> <Ix> 
<y> </y> 
<left> </left> 
<middle> </middle> 
<right> </right> 

</clav_token> 

Figure 3.7: Example lexical entries for speech and mouse trackers. Note that empty fields in lexica (for 
instance, x or Y, above) are typically filled at run-time with values from the tracker. 

3.5.2. N-Best Lists. 'Noisy' modes such as speech or vision-based tracking are often difficult to 

interpret and there may be multiple possible hypotheses for the same input. At this stage of the recognition 

28 



3.5. INPUT AND TRACKING 

process, there is no way to make use of contextual information to help decide between ambiguous possibili­

ties, so in theory they should a11 be considered by Clavius. In practise, though, only a subset of the competing 

hypotheses survive to be sent to Clavius in the form of an n-best list. Since each tracker determines the 

scores of each token, these can be ordered by decreasing likelihood and either the best n are sent for sorne 

fixed cutoff n, or n can be dynamic, with the threshold set by sorne minimum a110wable score. 

Once sent to Clavius, the n-best list is broken up into its component tokens and inserted individua11y 

into the search space. Additional constraints must then be enforced by Clavius in order to ensure that these 

tokens are considered as disjunctive alternatives for the same input, as discussed in §4.4. 

3.5.3. Strategies for Redundant Tracker Combination and Selection. As previously mentioned, 

the Clavius architecture allows for T > 1 trackers to monitor the same mode simultaneously. This is, of 

course, not the expected deployment scenario - but it is possible that the interaction engineer might have 

multiple pieces of tracking software for the same tracked mode, and reason to assume that putting them in 

parallel will aid the recognition process. 

Ail trackers are meant to identify their mode to Clavius by a 'mode key'. Clavius identifies redundant 

trackers by grouping them into sets by common mode key. When a tracker in one of these groups reports 

input to Clavius, it is then possible (though not necessary) for Clavius to wait a specified time for the other 

redundant trackers to report their interpretations. At this point, Clavius will apply one of the following 

combination mechanisms, according to its configuration: 

hard merge: Clavius essentia11y selects one of the T trackers as being the best indicator of actual 

user input, and inserts only the tokens from this tracker into the search space. The tracker selected 

has the highest average score among its n best hypotheses, and can therefore be considered as the 

most 'confident' in its prediction. 

soft merge: n-best lists of tokens from a11 redundant trackers are concatenated into a single list. 

Redundant tokens in this list are those representing the exact same hypothesis (and hence having 

the exact same argument/value structure), but coming from different trackers. These redundant 

tokens are identified and replaced by a single token having the same argument structure, and a 

score representing the average of ail redundant tokens. The resulting li st contains no redundant 

tokens, and the n-best of this list are then sent to Clavius. This mechanism provides a good 

heuristic combining the confidence in a hypotheses across multiple trackers. 

no merge: Ail hypotheses from a11 trackers are inserted immediately into the search space by Clav­

ius. This method is not preferred, since the distribution of scores becomes uncorrelated across 

tokens and redundant tokens will dutter the search space. 

In ail cases, the same mechanisms used to prevent multiple uses of ambiguous input from n-best lists 

are used to prevent multiple uses of redundant input from multiple trackers, as discussed in §4.4. 
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3.5. INPUT AND TRACKING 

3.5.4. Continuous Speech (dictation) Tracker. Continuous speech dictation provides the recogni-

tion of individu al words, while the source speech is still being uttered according to the lexicon is shown in 

Table 3.4. 

The CMU Sphinx-4 framework [63] is the latest addition to Carnegie Mellon's suite of open source 

speech recognition tools and serves as the basis for speech recognition in Clavius. It is a collaborative effort, 

jointly designed by CMU, Sun Microsystems Laboratories, and Mitsubishi Electric Research Laboratories. 

Sphinx includes an acoustic trainer (limited and fully continuous) and various speech decoders capable 

of n-best list generation and phoneme recognition. It is capable of bigram and trigram language models -

which will become relevant to specialized constraints discussed in §4.8 and uses limited subphonetic HMM 

topologies on phones, diphones and triphones. 

The main Sphinx-4 decoder is based on the conventional Viterbi search algorithm and beam search 

heuristic, and uses a lexical-tree search structure similar to its predecessors but with improvements in speed 

and accuracy [62]. A high-Ievel decomposition of the framework is shown in Figure 3.8, where the Linguist 

and Decoder components of the recognizer have been modified for Clavius. 

Figure 3.8: Architecture of the CMU Sphinx-4 framework [110] 

3.5.4.1. Sentence recognition vs. true dictation. CMU Sphinx only begins recognition ofraw PCM2 

recorded speech once a 'timeout' has been observed - that is, a short period of low signal activity on the 

microphone. The result is that CMU Sphinx can only provide the n-best sentence-leveZ hypotheses for its 

input, defeating sorne benefits of the Clavius architecture. Although 'true' commercial dictation systems exist 

that can report on word-Ievel hypotheses as soon as they occur, such as Dragon system's NaturallySpeaking 

[6], these were not available to this project. 

2Pulse Code Modulation. 
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Prosody Lcxicon 
Word Arguments Purpose 

Shift 
direction either a raise or drop in pitch 
amount the degree of difference in Po detected 

Table 3.2: The prosody lexical schema. 

For the purposes of the current Clavius implementation, the CMU Sphinx framework was used to emu­

late a dictation system. Specifically, once a sentence is recognized by Sphinx, it is split up into its component 

words which Sphinx can time stamp. If a given word is polysemous and belongs to n > 1 parts of speech (the 

word "box" can be both a noun, and a verb, for example), then n graphs are encoded in the appropriate XML 

format, and sent individually to Clavius as an n-best list. In this way, the need for part-of-speech tagging is 

completely circumvented and the parsing algorithm is left to select from the available word-tag associations 

itself, according to the relative scores of graphs using the different interpretations. 

3.5.4.2. The JSGF Grammar Format. CMU Sphinx also uses a different grammar format from Clav­

ius, and therefore a uni modal 'speech-only' grammar must be extracted from the multimodal Clavius gram­

mar. Sphinx uses the Java Speech Grammar Format (JSGF) which is a popular, BNF-style representation 

scheme [5]. Currently, the responsibility of translating the Clavius grammar to JSGF format for the benefit 

of the CMU Sphinx-based speech tracker lies with the interaction engineer. 

3.5.5. Continuous Speech (prosodie) Tracker. Acoustic prosody has been used in MMI as a means 

of identifying important time- and semantically correlated expressions across modes [57] where dramatic 

shifts in a speaker's pitch (fundamental frequency, Fo) can be indicative of important activity in another 

mode. 

The autocorrelation algorithm [13] measures Fo within windows of 1200 samples, 8 [0 .. 1200], for speech 

sampled at 44.1 kHz. Given 8, the algorithm shifts these samples towards the right in increments 8, from 

8 = 1 to 8 = 600, providing new sample sets 88[0 .. 1200+8]. For each shifted sample set, the autocorrelation 
1200 

function r(8) = L 18[i]- 88[i]1 measures the absolute difference between the original and shifted sample 
i=600 

sets. As the shift approaches Fo, the value of r( 8) decreases, and thus the 8 giving the minimum r( 8) recorded 

is taken as the value of Fo for the windowed speech3. 

Given changes in Fo over the speech signal, dramatic shifts can be deterrnined heuristically as changes 

above sorne minimum threshold Œ, within a small window of time t, where Œ and t are chosen at configuration 

time. Such a shift constitutes the lexical entity of this tracker, as shown in Table 3.2 and further discussed in 

§4.12. This approach is an app~oximation to the method used by Kettebekov, where pro minent segments are 

identified according to the maximum gradients of the pitch slope [57]. 

3Normally, the differential of the autocorrelation function would be used to detect minima 
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3.5.6. 2D/3D Hand Position Tracker. In Clavius, the desired mode of gestural interaction involves 

untethered deictic arm gestures in an immersive virtual environment. Tracking the distance and angle between 

the user's head and their hand (or hands) for this purpose is accomplished via an overhead camera. For 

instance, to track the 2D top-down head position, image differencing (background remQval) is performed 

between the current video frame and a reference frame averaging pixels of the 3 previous frames. This pixel 

difference can be assumed to correspond primarily to the user's body, the centre of which can be assumed to 

correspond to the 2D position, (Xh' Yh), of the user's head [109]. 

In order to locate the hands in the pixel difference map, skin colour segmentation is used, as shown in 

Figure 3.9. Conditions for skin colour (based on Peer and Solina [85]) have been determined empirically 

for the illumination conditions in the SRE environment, dependent on camera sensitivity, and adhering to the 

following constraints in RGB space: 

(3.1) {r,g,b} E SKIN t--; (r > 70) /\ (g > 30) /\ (b > 20) 

/\ (max[r, g, b] - min[r, g, b] > 55) /\ (Ir - gl > 15) /\ (r > g) /\ (r > b) 

Figure 3.9: Example of hand segmentation. Binary mask resulting from the skin segmentation process (left). 
Bounding boxes (right) are created around the two hirgest blobs of connected skin pixels. The bounding box 
is defined by its centre coordinate, width and height. 

Given the overhead positions of the head and right-most hand,(xT) Yr), assumed to be the dominant 

hand of the user, it becomes trivial to ca1culate the distance d = v'(Xh - xr)2 + (Yh - Yr)2 and angle 

() = arccos IYh dYr 1 between them, assuming the user is facing the top of the frame (normal to y = 0). 

Once d and () have been ca1culated, rudimentary gesture recognition can occur. Three types of gestural 

segments are important to Clavius, namely preparation, stroke/point, and retraction as suggested by Mc­

Neill [68]. Estimating these three gestures can be done heuristically by comparing measurements of d with 

customizable thresholds Dinner and Douter as follows: 

preparation: occurs when a hand leaves the state of rest at the side of the body, passing from 

d < Dinner to Dinner :::; d < Douter. 
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Deictic Gesture Lexicon 
Word Arguments Purpose 

type (preparation 1 point 1 retraction ) 
h", x-position of head in video frame 

Deixis h y y-position of head in video frame 
d distance of head to hand, in pixels, in video frame 
8 angle between head and hand in video frame 

Table 3.3: The 2D deictic gesture lexical schema. 

stroke/point: occurs when a hand nears its maximal distance from the body, according to the user's 

reach, passing from Dinner ::; d < Douter to Douter::; d. 

retraction: : occurs when a hand returns to a state of rest, passing from Dinner ::; d < Douter to 

d < Dinner. 

These gestures are encoded as soon as they occur (according to d) and sent to Clavius, in the format 

indicated in Table 3.3. Note that a user may begin a preparation gesture, but may retract before a stroke/point 

gesture, if they are unsure of their target. 

Unfortunately, problems including occlusion, varying illumination, false positives and poor pixel con­

nectivity lead to somewhat unreliable tracking at the time of empirical analysis. Furthermore, geometric 

errors incurred by projecting vectors through inaccurate head and hand positions onto the virtual environ­

ment are compounded by the use of a second camera used to deduce 3D positions. For these reasons, the 

mouse tracker of §3.5.8 is currently the primary source of deictic gesture recognition. 

3.5.7. Keyboard Tracker. The keyboard tracker is a drop-in replacement for the continuous speech 

dictation tracker (§3.5.4) in that its arguments are the same, with the same semantics. Specifically, the POS 

(part-of-speech) argument specifies the part of speech of the tokenized word, and lex the lexicography of the 

word, as shown in Table 3.4. A token is sent when the space bar is hit and a non-empty string of characters 

has been entered since the last space. If the POS of a word is ambiguous - for instance, the word colour can 

be either a noun or a transitive verb - then each possible interpretations are sent to Clavius in an n-best list, 

thereby circumventing the need to perform POS tagging. The scores associated with each token are meant to 

be the unigram prior probability of the word P(W) in sorne corpus, although these may be initialized at the 

discretion of the application designer if no suitable corpus yet exists. 

3.5.8. Monse Tracker. The mouse tracker reports on two types of activity by the mouse, as shown 

in Figure 3.10. First, a single-point deixis is identified by a mouse click, and described by the position of the 

mouse within a window, and the status of its buttons. If the mouse is displaced by a minimum distance before 

a depressed button is released, then this is identified by the tracker as a drawn area, and is reported once the 

button retums to its 'up' state. The arguments of each of these lexical entries is given in Table 3.4. Every 

33 



3.6. SEARCH SPACE 

Mouse Lexicon 
Word Arguments Purpose 

x x-position in window 
y y-position in window 

Deixis left status of left button (upldown) 
middle status ofmiddle button (upldown) 
right status of right button (upldown) 
x x-position of area's left edge 

SpeechlKeyboard Lexicon 
Word Arguments Purpose 

Word 
POS part-of-speech (ex. YB, NN, ... ) 
lex the word itself (ex. go, house, ... ) 

Area 
y y-position of area's top edge 
width pixel width of the drawn area 
height pixel height of the drawn area 

Table 3.4: The mouse and speechlkeyboard lexical schemas. 

token it sends has a score of 1.0, and does not have multiple interpretations for the same input (n-best list of 

length 1). 

An example of the usage of this lexicon is shown in the grammar in Appendix B . 

• 
Deixis Area 

Figure 3.10: Examples of deixis and area-drawing by the mouse. Clavius - not the tracker - will identify that 
the cylinder is selected by the deixis and that aIl three objects are selected in the drawn area. 

3.6. Search Space 

IntemaIlY' Clavius can be defined as a pseudo-blackboard system, since it involves a number of processes 

that work simultaneously and asynchronously on a shared data space. Blackboard systems are typicaIlY char­

acterized by the distributed nature of their subsystems and are especially useful in approximating solutions 

to problems for which no deterministic solution is known [16]. Similarly, Clavius was designed to be highly 

modular and distributed, as the eventual system was expected to require significant processing power. 

AlI partial parse hypotheses reside in the SEARCH SPACE, which is partitioned into the foIlowing three 

subspaces, according to the processing threads of §3.2.2.1: 

S[GJ: The Generalizer's Active Subspace. 

S[SAct;veJ: The Specifier's Active Subspace. 

S[SInactiveJ: The Specifier's Inactive Subspace. 
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These subspaces are named accürding tü the prücess that accesses their members, and whether their 

members can be transferred tü anüther subspace. Für example, graphs in g[SActivel are selected by the SPEC­

IFIER thread, and then müved tü g[SInacHvel. Table 3.5 summarizes the permissiüns granted tü the indicated 

prücessing threads. This distinctiün is further clarified in §4.1. 

Read Write De/ete 

SIG] Generaliser, Memory Manager Generaliser, Specifier, Trac~ers Generaliser, Memory Manager 

S[sActivel Specifier, Memory Manager Generaliser Specifier, Memory Manager 

g[sInactivel Specifier, Memory Manager, Cognition Specifier Memory Manager 

Table 3.5: Read, write, and delete permissiüns granted tü threads, accürding tü subspace. 

Since für müre cümplex applicatiüns the number of partial hypotheses is likely to become very large, 

it becomes expedient to partition the search space further. Für algorithmic reasons that will become clear in 

§4.1, and because the CATEGORY of a graph can be determined in 0(1) (because of the restrictions in §3.3.1), 

each subspace is implemented as a hash table [58] of subsets of graphs, keyed by the CATEGORY of thüse 

graphs, as exemplified in Figure 3.12. Specifically, 

DEFINITION 3.6.1. for the hash table h holding subspace g[Al containing the set of graphs 

{1l1 A,l, 111 A,2, .'" 111 A,lhl}' where Ihl = Ig[A11- the element h (c), con tains the subset {1l1 A,j 1 CATEGORY(1l1 A,j) = 

cl· 

3.6.1. Search Nodes. AlI partial parse graphs are encapsulated within container SEARCH NODES 

within the search space, to ensure that each graph is handled independently of, and separately from aIl others 

within the cüntext of data structure management. 

A search node, or node refers tü the atomic object, (J'i that encapsulates a partial-parse graph 1l1 i • This 

distinction is particularly useful tü abstract the mechanisms for data storage away früm the linguistic mecha­

nisms .of unification parsing. Although a particular partial hypothesis and its encapsulating search nüde can 

often be referred to interchangeably, the search node also allocates additional 'blackboard' space used to 

facilitate the computation of scoreS, further discussed in Chapter 4. 

3.6.2. Randomized Search Trees. The subsets that comprise each subspace can become very large 

themselves, especially for 'higher' grammar categories (such as sentences), and it is therefore important that 

they be ürganized to make certain operatiüns as efficient as possible. Treaps are specialized binary search 

trees that are efficiently height-balanced. Specifically, every node, v, in the treap has both a key and a priority, 

and is ürganized with respect to other nodes such that: 

• If v is in the left subtree of u, then KEY( v) < KEY( u) 

• If v is in the right subtree .of u, then KEY (v) ~ KEY (u) 
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• If v is a child of u, then PRIORITY (v) < PRIORITY (u) 

An example treap is shown in Figure 3.11. If the priorities associated with each node Xl) X2) ... ) X n of a 

treap are uniform randomly distributed, then the resulting treap is height balanced at 0 (lg n) in expectation, 

as discussed in [98] and [26]. 

Figure 3.11: Example treap. Each SEARCH NODE is labelled (k :: p), where k is the KEY of the node, and p 
is its PRIORITY. 

The most common operations on sets of parses in Clavius are summarized in Table 3.6, along with their 

asymptotic running times, given treap size N. Treaps are especially efficient at these operations, given that 

search nodes need to be ordered. Since a pointer indicates the node with the highest priority in a treap, reverse 

depth-first traversaI from that node effectively orders the nodes in the treap by decreasing (or non-increasing) 

order. Most of these operations are used heavily by the Generalizer and Specifier, although trimming anode 

is only performed by the memory manager, although frequently. Trimming anode refers to removing all 

nodes below a given node. Ali operations must maintain the treap properties. 

Operation Asymptote 
Find best node 0(1) (amortized) 

Find the M -best nodes o (M) (expected) 
Insert new node O(lgN) 

Delete given node O(lgN) 
Trim a given node 0(1) 

Table 3.6: The most frequent set operations in Clavius, and their asymptotic behaviour as implemented by 
treaps (of size N). 

Furthermore, the value pair (key,priority) required of search nodes can easily be instantiated by the 

score and timespan of their component graphs, respectively, since these values must be present in all search 

graphs (§3.3.1). Setting key = score orders the treap by score (a reverse post-fix depth first traversallists 

the nodes in order of decreasing score). Setting priority = time (or, at least, end-time) means that all nodes 
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below a given node are older than that node. Therefore, if a given node is "too old" to be considered for a 

partial parse, so too are aIl nodes below it. 

Parallel set operations such as intersection, union, and difference on treaps of size m and n have also 

been shown to run asymptotically in O(mlg(nt,m))) expected work and polylogarithmic depth [12]. This 

has potential applicability in future expansions to the internaI data management of Clavius. 

NP VP pp s 
6:;o..~~~ •• • ~1l::o.J~~ •. " . 7l~' 6::0.45 

, !,2:;q.95.: 3::0.2 '1111 
1::0.76 

1::0.4 

Figure 3.12: Example subspace, where each element is a treap keyed by their common category (ex. NP, VP, 
... ). The highest scoring node in each treap, and the best node overall, is highlighted. 

3.7. Scorer and Partial Ordering 

Upon being created, al! partial parses are assigned a score on lR[O .. l] approximating their likelihood of 

being part of an accepted multimodal sentence. This score is effectively a linear combination of scoring 

modules, which are defined in mathematieal detail in §4.2. The seorer software component of the Clavius 

architecture is essentially a static object that responds to requests of other eomponents. For instance, the 

Generalizer thread may pass a graph W to the Scorer to be evaluated, and the Seorer, in turn, will pass this 

graph to its various dynamically loaded knowledge sources for further evaluation. 

3.7.1. Knowledge Sources. Each knowledge source is an independent code module designed to 

measure a unique aspect of the given graph W according to its particular metric of multimodallanguage (see 

Chapter 4). These are eompiled into independent object code modules, which are then dynamically loaded 

using the dl_open directive by the Scorer. Since the Scorer calls each source dynamically to score W, each 

must implement the same function declarations, including initialization and scoring. The intention is to allow 

interaction engineers to write new scoring modules specifically for their project, without needing to change 

Clavius. 

This is discussed in detail in §4.2. 

3.8. Cognition and Application Interface 

Clavius decides when to stop searching for a better sentence-level hypothesis and to simply return its 

best so far (see §4.1.4 for details). This essential!y allows the system to trade deliberation time for more 
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accurate results, and vice-versa. The class of algorithms having this feature is called Anytime algorithms, and 

has been used by intelligent systems in signal processing, and mobile robotics[120]. 

The Cognition module decides when a sentence 'li B represents the correct interpretation of user input 

and communicates this directly with the Application over the network. This encodes the semantic informa­

tion of the sentence along with a classification of the type of sentence, constituting a dialogue act. 

3.8.1. State and World Interface. The state of the world is held in a MySQL database according 

to a relational database model whose structure is defined by the interaction engineer. This database is up­

dated with any state information from the Application the engineer deems appropriate, and is accessed by 

certain knowledge sources in order to make inforrned decisions about the partial parses they evaluate. This is 

discussed in further detail in §4.IA. 

3.9. Deployment Overview 

Deployments of multimodal systems are often highly application-specific [74], and hence are limited 

in their scalability and applicability in arbitrary computing environments. They are typically bisected into 

two main architectural subcateogires: feature-level deployments or "early fusion" - in which signal-Ievel 

recognition in any mode affects and influences the course of recognition in the others [82][84], and semantic­

level deployments or "late fusion" - which consists of an independent collection of N recognizers and an 

N + Ith component that unifies their output (see CUBRICON [73], for example). Early fusion may be 

more appropriate for more temporally synchronized input modes [66][93] due to the possibility to exploit 

codependencies early, although the late fusion approach may be more easily scaled up and trained - mainly 

due to the preponderance of available unimodal data. Clavius is an example of feature-Ievel early fusion. 

Clavius is a modular collection of libraries and resources that can be deployed in a number of ways, and 

essentiaIly combines aspects ofboth feature-Ievel and semantic-Ievel deployments. It is grammar-based, and 

places almost no assumptions on the type of application or physical interface with which it is used - and is 

hence highly generic. 

There are essentiaIly two extremes of deployment methodology with the Clavius architecture that vary 

in the degree of their concurrency. In the first, ail processing oceurs on a single host - including aIl tracking 

and application logic, as shown in Figure 3.13. In the second model, processing threads are maximally spread 

over multiple machines, as shown in Figure 3.14. In the latter case, each tracker would ideally be run on a 

dedicated machine attached to the appropriate sensing equipment. Since the generalization and specification 

processes are so decoupled, multiple instances of either function can be spread over an arbitrary number of 

machines in this scheme - improving concurrency and hence execution time. The mutex-controlled critical 

sections of Clavius that provide protection to the search space does not need to be modified as the number of 

accessing methods scale up - hence each partial parse will only be accessed by one thread at a time. 
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Regardless of the deployment scheme used, aIl communication between Clavius and the trackers, the 

application, and the world database must occur over TCPIIP, even if exdusively on the local host. Further­

more, aIl machines must have their internaI docks synchronized to between the nearest 200l1s and lOms, 

which is possible through the Networjc Time Protocol [87] - an externaIly run service. No additional network 

security has yet been implemented. 

Vlrtual Envlronment 
• SHARED DATA SPACE 
• SCORlNG LOGIC 

• G GENERALISER THREADS 
• S SPECIFIER THREAD8 

Figure 3.13: Simple deployment layout, with one central processor for aIl tasks and data management. 

Figure 3.14: Distributed deployment layout, where one central server aIlocates work orders and maintains 
data integrity, one processor is assigned to each modality, and D ?: 1 additional processors execute an 
arbitrary number of Generalizer and Specifier threads on the shared space. 

3.9.1. Software Engineering. The core framework was developed for the Linux platform with the 

version 2.6 kernel, with further deployment information outlined in §5.l.5. Clavius has undergone four phases 
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of development, roughly a) preliminary research (spring 2005), b) development (summer 2005), c) quality 

assurance and bug-fixing (fall 2005), and d) experiment and analysis (winter 2006). 

AlI code within the core of Clavius is written in C, with trackers and testbed applications written in C++ 

and JAVA. The final size of the code base is approximately 10900 lines of C code in the core of Clavius, with 

approximately 1580 lines of original JAVA code for ancillary test applications, and an additional1631lines 

of configuration, induding grammars. 

In Clavius, a procedural programming model was employed, although aspects of object oriented pro­

gramming were accompli shed via opaque types, and modular structures. To save time and management 

overhead, aIl memory allocation is performed at startup by the use of 'free lists'. 

Table 3.7 lists the software components that are required to build and run Clavius. 

Component Description 
MySQL:2: 4.1 World state. Spatial extensions used to compare world objects. 
libxml:2: 2.6 Decoding of all network communication. 

POSIX threads Required for multithreaded architecture. 
GNUsockets Used for all communication by Clavius with components. 

Network TIme Protocol server Synchronization of parser and tracker timestamps. 

Table 3.7: Necessary software components for compiling and running Clavius. 
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CHAPTER 4 

Algorithmic and Linguistic Issues 

This chapter delves deeper into sorne of the concepts and components introduced in Chapter 3, concentrating 

on their algorithmic, mathematical, and linguistic consequences. First, the as Aigorithm is examined in 

greater detai! in §4.1, concentrating on implementation details. Then, §4.2 describes the general mechanism 

of applying scores to partial parses, before the various approaches designed for that purpose are discussed in 

§4.3 - §4.12. Finally, §4.13 discusses sorne consequences of the as Aigorithm. 

4.1. The GS Algorithm 

The OS Algorithm consists of multiple concurrent, asynchronous processes operating on the search 

space. It was inspired initially by bottom-up multidimensional chart parsing [49], before issues of computa­

tional efficiency with this approach drove development towards a best-first dynamic programming strategy, 

such as those employed in the Viterbi and CYK algorithms [52]. 

The OS Algorithm employs a high degree of parallelism. Multiple instances of the two chief processors 

- Oeneralization and Specification - are used simultaneously to explore the search space bi-directionally, as 

discussed in the following subsections. 

4.1.1. Multimodal Bi-Directional Parsing. Clavius' parsing strategy combines b'ottom-up and top­

down approaches, but differs from other approaches to bi-directional chart parsing [97][91] in several key 

respects, introduced in the following subsections before being presented in practice in §4.1.2 and §4.1.3. 

4.1.1.1. Asynchronous Collaborating Threads. A defining characteristic of the approach in Clavius 

is that graphs I)! are selected asynchronously by two concurrent processing threads, rather than serially in 

a two-stage process. In this way, processes can be distributed across multiple machines, or dynamically 

prioritized. Oenerally, this allows for a more dynamic process where no thread can dominate the other. In 

typical bi-directional chart parsing the top-down component is only activated when the bottom-up component 

has no more legal expansions [1]. 



4.1. THE OS ALOORITHM 

4.1.1.2. Unordered Constituents. Clavius incorporates the unconvential approach of placing no manda­

tory ordering constraints on the set of constituents "fi of any mie fi, hence the rule f abc: A ---. B C parses 

the input" C B". Temporal ordering can easily be maintained, however, as explained in §4.10.2.3. 

4.1.1.3. Partial Qualification. Whereas existing bi-directional chart parsers maintain fully-qualified 

partial parses by incrementally adding adjacent input words to the agenda, Clavius can construct parses that 

instantiate only a subset of their constituents, so f abc also parses the input "B", for example. 

4.1.2. Generalization. A GENERALIZER thread monitors the best partial parse, \(1 g' in S[GJ, and 

creates new parses \(Ii for all grammar mies fi having CATEGORY(\(Ig) on the right-hand side. Effectively, 

these new parses are instantiations of the relevant fi, with one constituent unified to \(19' This provides 

the impetus towards sentence-Ievel parses, as simplified in Aigorithm 5 and exemplified in Figure 4.1. It 

abstracts information in a given graph wg to 'higher-Ievel' grammar categories, so if DEPTH(\(Ii) = d, then 

its generalization will have depth d + 1. 

Naturally, if mie fi has more than one constituent (c > 1) of type CAT(\(Ig), then c new parses are 

created, each with one of these being instantiated. 

Algorithm 5: GENERALIZE 

Data: Subspaces S[GJ, and S[SAc'iveJ, and Grammar f 
Result: New partial parses written to S[GJ, chosen parses moved to S[SActiveJ 
while data remains in S[GJ do 

0'9 := BesLnode (S[GJ) 
\(19 := Graph_of (ag ) 

foreach rule fi E f S.t. Cat (\(Ig) E RHS (fi) do 
((nroot, <I>RHS) , nrh.) := GeLRHSNode (fi) 
foreach j such that nrh. 's jth outgoing arc is 6j = ((nrh., <I>con.tituent) , nj), and Cat 
(\(Ig) = Cat (nj) do 

\(Ii:= [. RHS.] 

for k = 1..11 RHS (fi)11 doeachconstituentoffi 

l 
if k = j then desired constituent 
L add \(1 9 to kth slot of \(1 i's RHS 

else 
L add null arc to kth slot of \(Ii's RHS 

\(Ii := Unify (fi, \(Ii) 
if3\(1 i then 

l ai ;= Encapsulate (Wi) 
Apply Score (\(Ii) to ai 

Insert ai into S[GJ 

Move a g into S[SAc'iveJ 
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Since the GENERALIZER is activated as soon as input is added to B[Gl, the process is interactive [108], 

and therefore incorporates the associated benefits of efficiency. This is contrasted with the aU-paths bottom-up 

strategy in GEMINI [32] that finds aU admissible edges of the grammar. 

Figure 4.1: Example of GENERALIZATION. 

4.1.3. Specification. A SPECIFIER thread provides the impetus towards complete coverage of the 

input, as simplified in Aigorithm 6 (see Figure 4.2). It combines parses in its subspaces that have the same 

top-Ievel grammar expansion but different instantiated constituents. The resulting parse merges the semantics 

of the two original graphs only if unification succeeds, providing a hard constraint against the combination 

of incongruous information. The result, \[J, of specification must be written to B[Gl, otherwise \[J could never 

appear on the RHS of another partial parse. Consequences of this approach are discussed in §4.4 and §4.6. 

Specification is necessarily commutative and will always provide more information than its constituent 

graphs if it does not fail, unlike the 'overlay' method of SMARTKoM [3], which basically provides a subsump­

tion mechanism over background knowledge. In Clavius, the specified graph \[J u (Algorithm 6) subsumes 

both of its component parses, \[J u ç \[J 8 and \[J u ç \[J j. According to the nature of subsumption, the resulting 

graph will always contain more information than its components - and hence coyer more of the user input in 

this case. 

4.1.4. Cognition. The COGNITION thread serves a dual role as the interface between Clavius and 

both the application it controls, and the world state database that they share. It is primarily a monitoring 
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Aigorithm 6: SPECIFY 

Data: Subspaces aISAcU".l, and aISInaOti".l, Grammar r, and Bearn width W 
Result: New partial parses written to alGl , chosen parses moved to aISInacti".l 
while data remains in aISActi".l do 

as := Best_node (aISActivel) 
aj := Best_node (aISInocti.el) 
'li. := Graph_of (a.) 
'lIj := Graph_o.f (aj) 

w:= 1 
while :l'li j and w S; W do 

if ActiveConstituents ('lIs)n ActiveConstituents ('lIj) = 0 then 
'lI u := Unify ('li., 'lI j ) 

if :l'llu then 

l <7u := Encapsulate ('lIu) 
Apply Score ('lIu) to au 
Insert au into alGl 

aj := predecessor of aj in aISInacH •• l 
'lIj := Graph_of (aj) 
w :=w+ 1 

Move as into aISInac';.el 

+ 

DT 

cav P ·• NN 
,(>~. 0.5 

\'*'. 
',$,,,, • house 

\. *". house 

Figure 4.2: Example of SPECIFICATION. 

tool, augmented with networking code. The main functions it performs are summarized in the following 

subsections, each of which is implemented by an interruptible thread. 

4.1.4.1. Sentence Acceptance. The only task that the COGNITION thread must necessarily perform is 

the acceptance of interpretations for user input, and the transmission of this interpretation to the application 

that input controls. 
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Spetifically, whenever a new sentence-level parse, WB is inserted into the Specifier's inactive sub­

space, S[SInacHve] and it is the highest-scoring sentence-Ievel parse, COGNITION is signalled and begins a 

countdown of T {ts, specified by system configuration, but typicaIly between.2 or 3 seconds. If a new best 

sentence-level parse during this time, the countdown is restarted. 

When a countdown is started, the average score, s'" of the N next best sentence-Ievel parses in S[SInacHve] 

is taken, for configuration parameter N. At the end of the countdown T, WB has not been superseded, but 

its N best predecessors might comprise new altemate hypotheses. The average of these scores, s~ is taken 

and compared with the original average sI-'" If s~ - s'" > () for sorne parameter () (the difference will never 

be negative), this implies that the search process is improving its estimates at the 'high end', and that further 

deliberation may yield a better WB. If this is the case, the countdown is again restarted until the scores of the 

N best competitors no longer approach SCORE(WB) by the minimal amount. 

Once this occurs, WB is been accepted, and COGNITION sends it in the XML format of Clavius gram­

mars (Appendix B), to the ApPLICATION over the network. 

4.1.4.2. Queries. The COGNITION module connects to and reads from the MySQL WORLD data-

base, as specified by its configuration. AlI scoring modules that make use of this information send properly 

formatted SQL queries to COGNITION that in tum performs the database lookup, and sends the results to the 

issuing module. The COGNITION module also prohibits modification of this database. 

4.1.4.3. Dialogue Awareness. If implemented, special scoring modules that make use of the fiow of 

dialogue between the human user and their application can query COGNITION to indicate the dialogue act 

most recently issued by the application, and the user (assuming the previous recognition was correct). This 

is discussed in §4.9. 

4.1.5. Memory Management. There are several reasons to perform memory management to trim the 

size of the search space. First, there is the obvious fact that finite memory would be exhausted as new parses 

accumulate in [SInactive], and that the resulting treaps would be excessively costly to traverse and manage. 

Another basis for memory management is to simply aid the Generalization and Specification processes by 

removing hypotheses from their consideration that are unlikely to be of consequence to them. Unlike the 

former, the latter rationalization implies evaluation of the partial parses to determine candidacy for removal. 

Despite these grounds for the automatic reduction of the search space, Clavius does not reset the search 

spaces to their initial empty states once a sentence has been approved by the COGNITION module. Maintain­

ing such intermediate data once a hypothesis has been accepted is an uncommon practise, but is useful for 

two reasons; to correct for possible mistakes, and to aIlow for unifications with anaphoric (§2.3.1) entities. 

The memory management thread traverses aIl treaps in each subspace in a prefix depth-first search 

(nodes are examined before its children). When it encounters search node (Jm, it may do one of the foIlowing: 
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(i) ifTIME.START(am ) <CURRENLTIME-BT for sorne parameter BT, then am and aIl nodes below 

it (by virtue of the treap property) are too old for consideration, and the whole subtreap rooted at 

am is removed (trimmed - §3.6.2) in 0(1). 

(ii) if the difference between the score of the best graph in the treap and SCORE(GRAPH.OF(am » 
is greater than sorne parameter Os, then am's score may be considered to low for consideration. 

Therefore, the am and the entire left subtreap of am can be removed. 

4.2. Parse Seo ring and Domain-Centrie Knowledge 

The score of every non-lexical (tracker) partial parse \II, SCORE(\II), is a weighted [incar combination 

of 181 independent scoring modules, or KNOWLEDGE SOURCES: 

(4.1) 

181 
Score(w) = LWi";i(W) 

i=O 

Each module presents a score function Ki : \II -> ~[o .. 11 according to a unique criterion of multimodal 
-> 

language, weighted by a vector st, where each component Wi is also on ~[o .. 11' Furthermore, enforcing 
ISI 
L Wi = 1 ensures that 0 :S 8core(w) :S 1 for any \II, thus normalising the score space, and controlling the 
i=O 
partial ordering of parses. 

The criteria of multimodallanguage explored in this model are outlined in §4.3 - §4.12. In Clavius, these 

criteria generally represent a particular and precise aspect of multimodal communication, and individually 

define a partial ordering over the set of aIl \II. Their co-representation in this forrn is meant to provide a 

transparent and extensible mechanism in which new discoveries about MMI could be easily added to the 

system, and one in which disparate approaches can be combined. 

Apart from the obvious priority scheme existing between the modules via their weights, aIl ";i are 

considered to be independent from each other. This implies that the partial ordering of \II (according to 

grammar r) by any Kj does not effect the ordering by ";k, k i= j. Data localization and abstraction has ensured 

that this is pragmatically the case within the current implementation of Clavius, however §5.3 describes how 

criteria can nevertheless sometimes operate against one another, despite having similar goals by 'preferring' 

divergent parse classes. 

Although the assumption of fixed linear independence between criteria is common in practise, it is not 

necessarily theoretically optimal. For instance, researchers at IBM have demonstrated that weights automati­

cally assigned to audio and visual components of MMI based on audio-stream fidelity (the degree of voicing 

in the audio) at ron-time improves accuracy by 7% in 'clean' speech and by 26% in 'noisy speech'(noise at 

8.5dB SNR)[37] when compared to the audio-only WER. They also show another technique, more similar 
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4.3. TEMPORAL AUGNMENi, 11:1 

to Clavius, where audio and visual streams are independently trained offline, and have their relative weights 

jointly trained to minimize WER multimodaIly, achieving 5% relative improvement over N-best re-scoring. 

This approach is similar to other weighting schemes for audio-visual fusion in speech recognition [17] [111], 

with characteristic results. 
-4 

Finally, values for the set n can currently be trained off-line using supervised MLE on acquired training 

data annotated with desired parses, as explained in §5.1.7.1. This model does not readily allow the weights to 

be trained or updated on-line during user interaction, although incremental auto matie weight update mecha­

nisms could be incorporated in the future. 

4.2.1. Hard Constraints. A side effect of only using "'i : \li -4 ~[o .. 1l is that it precludes scoring 

modules from explicitly forbidding partial parses from consideration. If sorne graph \li represents sorne 

impossible parse, and only a single "'i recognizes this, retuming a score of 0 still allows for a SCORE(\li) > 0 

ifwj,kappaj(\li) > 0 for at least onej i- i. 

Therefore, sorne scoring modules implement 'hard constraints' that expressly forbid unification outright, 

retuming Ki(\li) = -00 in those exceptional cases, therefore SCORE(\li) = -00, and \li is not added to the 

search space, so aIl parses under consideration still have a score in ~[o .. 1l' 

An example of hard constraints in practise is given in §4.4. 

4.2.2. Module Parametrization. Scoring modules can accept extemally-specified parameters that 

control their behaviour. This is of primary importance, as it allows training each knowledge source according 

to the specifie domain of their criterion. These may include parameters to Gaussians, thresholds or HMM 

transition weights, for example. When modules take extemally-specified arguments, these are differentiated 

by their superscript, such as ",~(7), and are introduced below where appropriate. 

4.3. Temporal Alignment, "'1 

A pronounced correlation in time exists between co-referring speech and gestural events, notably be­

tween demonstrative pronominals and deixis. The "'1 module, therefore, partially orders parses \li whose 

constituents coyer similar timespans in proximity and scope. A stochastic mechanism is used to measure the 

similarity of timespans, where each timespan [TIME_START(\li),TIME_END(W)] is modelled with a Gaussian 

N(J.L, a2
), as shown in Figure 4.3, such that 

and 
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{

",«IdeI) 
2 l a -

I\:~c) (TIME_END(W) - TIMEXfART(W» 

if TIME_START(W) = TIME_ENO(\li), 

otherwise. 

where the chiefparameterization is specified by ",~c). Timespans are modelled by Gaussians in this way 

so that the similarity amongst both their lengths and locations can be simultaneously compared, while also 

using a smooth nonlinear function to account for possible measurement error in timing. 

Ils 
lime 

Figure 4.3: 1\vo gaussian curves NA (PA,O'~) and NB (PB,O'1) representing timespans for constituent 
parses \li A and \li B, respectively. 

The Kullback-Leibler distance, or Relative Entropy, is a frequently used information-theoretic distance 

measure between two continuous probability densities on x E X, p and q [67]: 

(4.2) KL(pllq) = ! P(X)lOg~~:~dX 
However, equation 4.2 is non-symmetric as "'1 requires. A symmetric version, for Gaussian distributions 

NA (PA, O'~) and NB (PB, 0'1), whose derivation is given in §A.l.3, obeying the triangle inequality used in 

"'1 is: 

SKL (NA Il NB) = SKL (NBIINA) 
(4.3) 

_ (CTi - CT~)2 + ((/1-1 ~ !-t2)(CTr + CTm2 

- 4CTrCT~ 

Unlike the amount of overlap between NA and NB, BK L (NA liN B) can be computed very quickly (in 

0(1». Since BK L : NA X NB --> ~[o .. ooJ and is a measure of distance, e-SKL(NAIINB) is used as a measure 

of similarity on ~[O .. lJ where identical timespans have maximal score: 
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4.4. COMMON ANCESTRY CONSTRAINT, 1\;2 

=1 

Therefore, K1 (lIt) is the average similarity between aU of lIt's existing constituents, RHS(\lI): 

~ e-SKL(NAIINB) 

'li A, Wb E RHS(W) 

(4.4) 
WA=!WB 

Kl (w) = --N-U-M-_P-A-IR-S-'::(R=-=H:::-:S-::-;(""'W"""))--

where Ni ({li, an is parametrized by the timespans in \li i, as described above. The result is that phrases 

with co-referring cross-modal utterances are more highly scored. Further consequences are discussed in 

§5.2.2. 

4.4. Common Ancestry Constraint, "'2 

A consequence of accepting n-best lexical hypotheses for each word is the risk that two competing 

hypotheses for the same input might be unified into a single phrase during SPECIFICATION. That is, if \li A 

and \liB represent alternatives for the same input, no partial parse \li should exist such that \li A :::; lIt 1\ lIt B :::; lIt. 

The K2 module expressly prohibits such simultaneous substructures by providing a simple hard-constraint 

(§4.2.1). Metadata encoded in each word-Ievel graph \li by the trackers indicate a unique ID, k(lIt) for each 

n-best list. If \li A and \liB are lexical alternatives, then k(1It A) = k(\lI B)' When lIt is generalized, creating 

parse \li', then k(\lI') = k(\lI). 

Given this metadata, the K2 module can compute {k (w A)} n {k (w B ) }, and therefore 

if calling thread is GENERALIZER, 

(4.5) 'v'WA #- WBE RHS(w), {k(WA)} n {k(WB)} = 0, 

otherwise. 

When K2(W) = -infty, then even if W2 = 0, Score(w) = -00 and is not added to the search space. 

When graphs \lIx and \lIy are specified to form graph lIt, this module encodes in the latter the metadata 

k(\lI) = {{k(\lI An u {k(\lI B n}, aUowing for the comparison in Equation 4.5 to properly prohibit illegal 

parses. 
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4.5. Probabilistic Declarative Grammar, "'3 

More common grammatical constructions are emphasized by transforming the multimodal grammar 

into a probabilistic one according to the Probabilistic Context-Free Grammar (PCFG) formalism. Specif­

ica11y, given grammar roles r i,j : N(j) +- C< i), for sequences of terminaIs and non terminaIs, C< i), each 

is augmented with a probability, p(r i,j) approximating its likelihood of being used in a parse, under the 

cons train that: 

(4.6) ViLP (NU) +- Ç(i)) = 1 

That is, the probabilities of a11 roles with N(j) on the LHS sum to 1. The value ~3C\[J) is the product of 

the probabilities of a11 roles used in a parse: 

(4.7) 

, where r(\[J) represents the top-Ievel ri expansion in \[J. The ~3 module requires that Clavius XML 

grammars be augmented with features <I> = Pr with floating point values representing the associated proba­

bilities. Currently, these values are linear, although logarithmic representation may be used instead to avoid 

numerical underrun errors. 

Probabilities applied to individual features <I> of graphs have been used in exponential probabilistic 

models [48], but not yet in Clavius. 

4.5.1. Independence Assumptions. There are certain assumptions implicit in ~3'S probabilistic 

grammar model. Namely, given the parse \[J A with constituent substroctures \[Ji and \[J j ( \[Ji =1= \[J j ): 

Place invariance: ~3 (\[J i) is independent of \[J i occurring before or after \[J j. 

Ancestor-free: ~3 (\[J i) and ~3 (\[J j) are independent of their use in the production of \[J A. 

Context-free: The role expanding \[J A from \[Ji and \[J j expands to a unique nonterminal N<A) in 

the grammar. 

In this model, the probability of a sentence Wlm = Wl W2 ... Wm , is P(Wlm ) = L ~3(\[J) for a11 \[J 

>li 
that coyer Wlm , which might be grammatically ambiguous. 

4.5.2. Training. Training the probabilities of a PCFG can be done in two ways, depending on the 

data. For unannotated data, the Inside-Outside algorithm can be used to generate a new grammar r repre­

sentative of the input set [67]. This approach is not we11-suited to Clavius, as it will typically not be able to 

include semantic constraints, for instance. Therefore, aIl p(r i,j) are trained according to maximum likeli­

hood estimation on annotated training data, as discussed in Chapter 5. 
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4.6. Input Coverage, 1"1:4 

For reasons discussed in §5.3, it is necessary to explicitly apply a preference for longer sentences - or 

those that coyer as much of the input as possible. This can be accomplished easily by a ~[O .. lJ function of the 

number of words in a given parse \li. Specifically, 

(4.8) /q(\[f) = 2 - 1 
1 + e-,.!.c)NUMBEROFWORDSIN(W} 

The function NUMBEROFWORDSIN can be computed in 0(1) given metadata similar to that used 

in §4.4. The parameter /î,ic) can be instantiated according to the expected length of sentences used in an 

application, as shown in Figure 4.4, although this does not change the ordering of parses by /î,4 - just the 

range of its contribution to the overall Score. For instance, smaller values of /î,ic) may be used for longer, 

more conversational sentences, and larger /î,ic) for shorter command-driven sentences. 

0.2 c=O.4 --
c=0.1 --
e=1.0 --

0 
0 5 10 15 20 25 30 

Number of Input Words 

Figure 4.4: Different curves of /î,4 given varying parameters I\;ic). 

This approach is similar to the effect of the reduce-reduce conflict resolution in GEMINI [32], in that 

parses covering more input are preferable to shorter ones, and are examined first. 

4.7. Information Content, /î,5 

Many problems in NLP can be cast as classification problems where semantic or statistical context pre­

dicts membership in linguistic classes. Important problems of relevance to Clavius, such as part-of-speech 

tagging, PP-attachment, parsing and categorization have been approached via Infonnation Theory as an ex­

tension to regular conditionally probabilistic models[89] [9]. The use of information theory is especially 

applicable to Clavius, since the feature structures it uses are inherently amenable to semantic evaluation. 

The 1\;5 scoring module uses a maximum joint entropy model to combine diverse pieces of contextual 

evidence in estimating the probability of linguistic classes co-occurring within a given linguistic context. In 
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Clavius, this is useful in maximizing the coverage of the input early in the search process, in conjunction with 

"'4 §4.6. 

As previously discussed in §3.3.1, aIl sentence-Ievel graphs must have a single arc with feature con· 

tent encapsulating high-Ievel semantic variables. The "'6 module associates probabilities P( cp s -> v) for 

aIl (<P s, v) pairs of features cp s and values v in subgraphs rooted by content in a data set. For example, 

P(action -> delete) reftects the proportion of CPs = action features having the value v = delete in a data set. 

In the same way, multivariate probabilities P( <Px -> v, CPy -> w) are also computed for pairs of co-occurring 

feature-value pairs. 

For X and Y being the sets of content feature-value pairs in I]! X and I]!y, respectively - the joint mutual 

information between these parses is: 

(4.9) I(wXj\lJy) =- P (
m m ) 1 P(<T>", --t v",)P(<l>y --t Vy) 
"'''' --t V"""'y --t Vy g ) P (<1>", --t v"', <Py --t V y 

where I(\Ifx; \If y) = I(\Ify; \Ifx) [67]. This metric is useful only during the SPECIFICATION step, 

where a shifted sigmoid (with parameter lI;~c) similar to the one used in §4.6, gives: 

if calling thread is GENERALIZER, 
(4.10) 

for SPECIFIER called for graphs W x and Wy 

Since I(I]! x; I]!y) is a measure of how many bits would be needed to encode the combination of \If X 

and I]!y, K6 therefore promotes parses that maximize information across constituents. 

Consequences are discussed in §5.3. 

4.8. Multimodal Language Model, ""6 

There has not been very much research extending language models to multiple dimensions l . In Clavius, 

the 11;6 module uses a bigram probability table according to the lexica associated with a given grammar. For 

a grammar with M modes (ml,m2, ... ,mM), where the i th mode has Iimililexicai entries, a 'word' w is 

represented by an M-dimensional vector, where the jth component is either one of the lexical entries in mj, 

or À - the 'empty' (null) string. The interpretation of w = (Wl, W2, ... , WM) is that over a non-zero period 

of lime, each component Wj co-occurs with the others. 

For example, Figure 4.5 shows how K6 breaks down a partial parse for the phrase "paint '" orange" into 

7 2-dimensional 'word' segments and Table 4.1 defines these segments. 

1 See §A.2.4 for more on language modelling. 
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speech 

gesture 

Figure 4.5: Example 7-word breakdown of "paint \, orange", under 1\;6 representation. 

Table 4.1: Two dimensional representation of multimodal segments in Figure 4.5 

Given this new segmented representation of the random variables, the task of language modelling in 

Clavius becomes trivial. For each instantiation of the interpreter, an N x N matrix is constructed, where 

M 

(4.11) N = II (ilmili + 1) 
i=l 

Each row and column of this table represents an M -dimensional vector for a specifie permutation of the 

symbols in ail modes. Cell (i, j) of this matrix is P( Wi Iwj) - the probability that a multimodal 'word' (Wi) 

immediately follows another (wj). Initial training of these probabilities naturally follows standard techniques 

of n-gram learning on finite data, although the increased complexity of additional dimensions may limit its 

effect if data is scarce. In this case, additional adjustment can be accomplished by discriminative training 

methods [96] [61], discussed in §A.2.4. 

Therefore, given a partial parse \]! covering (ordered) word sequence < s > tUl W2 ... w-;" < / s > (for 

sentence-start and -end tags < s > and < / s >, respectively, 

n 

(4.12) 1\;6(W) = P(wli < 8 ». P« /8 > Iw-;')' LP(wilwi-:'l) 
i=2 

This product can be converted to a sum of logarithms to avoid numerical underruns. 

4.9. Dialogue Model, "'7 

The "'7 scoring module in Clavius is tightly coupled to the grammar and is based on the assumption of 

a command-driven dialogue between the human user and their application. The interaction engineer adds the 

feature <DIALOGUKTAG> to ail sentence-Ievel rules in their grammar, with values indicating the type of 

dialogue event they represent, such as those indicated in Table 4.2. 
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Forward Types Example 
assertion "f always fly first class" 

action-directive "Book me aflight "-.,.here" 
info-request "Who lives in "-.,.that castle?" 

offer "[ can meet you at 3" 

commit "/' Il come to your party" 
conventional-opening "Hello" 

Backward Types Example 
accept "Yes, f can meet you at that time." 

signal-nonunderstanding "What did you say?" 
acknowledgement "OK" 

answer "Nobody lives there." 

conventional-c\ose "Goodbye" 

Table 4.2: Subset of dialogue events types, from [45]. 

The application may respond and participate actively in the dialogue, producing its own dialogue events. 

The "'7 module uses this information, and procures it from the application via the COGNITION thread (§4.1.4). 

Given that the user's previous utterance was recognized as being of type Ti-2, and that the application's 

previous utterance was of type Ti-l, then 

if 'li is not a sentence-level parse, 
(4.13) 

for 'li being of dialogue event of type Ti 

This is a state-based metric similar to Hidden Markov methods, where the conditional probability is 

trainable via maximum likelihood. This module is, of course, designed for conversational agents, from which 

appropriate data would be more readily procured. 

4.10. Functional Constraints, "'8 

The phrase "pour the glass into the water" has no meaning, nor is the multimodal interpretation "re­

move this "'" triangle" likely if the pointing gesture, ",", indicates a square, say, or empty space. Constraints 

that prohibit or inhibit these types of phrases cannot always be expressed declaratively, and depend instead 

on dynamic state or common-sense information. 

Associating functional constraints with grammar rules has been done in HPSG and other unification 

grammar formalisms [118]. Specifically, grammar rule ri can be associated with set of functions Fi = 

{Al A2 ... An} by the interaction engineer, where each function in Fi evaluates to a score on lR[o .. ll, and 

are combined by a parenthesized structure of terms (Table 4.3). Each function can take parameters consisting 

of nodes in the DAG that implements ri (Figure 4.7). 

Essentially, these functions are instantiations of a À-calculus whose purpose is to help guide the search 

process by evaluating any aspects of the world or dialogue that cannot be declared statically in the grammar. 

This evaluation includes the application of hard constraints, common-sense knowledge (§4.10.2.4) and other 

semantic comparison (§4.1O.2.3). The functions are executed at run-time ("applicative expressions") by the 

"'8 module when scoring the graph \li that incorporates them. 
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4.10.1. Instantiation and Definition. The configuration parameters to the "'8 module include the lo-

cation and name of the objectcode implementing the functions in the grammar (ex. \$CODEBASE/ constraint s . 0). 

This object code must be compiled with shared, position-independent and dynamica11y loadable ftags. 

Inclusion of the "'8 module necessitates that a j CONSTRAINTSl, arc be present in the grammar for each 

rule, and forbids execution if it is not present. If there are no constraint functions associated with ri. then this 

node will be empty. If constraint fimctions exist, they must be specified in the format provided in Table 4.3. 

constraint +-- term 10 
term +-- ( term ) 

fcn +-- fname ( PARAMS ) 
term +-- fcn 

term +-- term + term term +-- term * term 
PARAMS +-- 01 $p 1 ô 1 PARAMS , PARAMS 

Table 4.3: The description language for constraint functions, including functions (fcn), terms, and parame­
terization (PARAMS). 

The two operators, + and * are soft-addition and multiplication respectively. Namely, + returns the 

summation of the scores of its operands, or 1.0, if this sum exceeds 1.0, while * returns the product of the 

scores of its operands. In this way, the values of a11 terms are constrained to be on R[o .. l]' and the operators 

become essentia11y soft logical operators, approximating V and !\ in Boolean arithmetic. Parentheses have 

the normal semantics and execution precedence over the operators. "'8(1l1), therefore, returns the R[O .. l] 

evaluation of its highest term upon execution of its functions. 

Figure 4.6 provides an example of this in practise. 

<parame> 
\$dx <dx> 100 </dx> 
\$dy <dy> 42 </dy> 

</params> 
<constraints> 

<! [CDATA[ 
(f_l( \$x_l, \$y_l, \$dx, \$dy ) + f_2( \$x_2, \$y_2 » 

ll> 
</constraints> 

Figure 4.6: Example use of functional constraints in the Clavius XML grammar format. 

Incorporation of the functional constraints into the DAG implementing the grammar rules is exemplified 

in Figure 4.7. Parameters to each function are always re-entrant nodes whose values are defined elsewhere in 

the graph structure, hence these nodes may be roots of complex substructures. 
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4.10. FUNCTIONAL CONSTRAINTS, "'8 

.~ ................ + 
operator c..--_ Object:At 

term fcn 
~_-""'1~485 

\~-""""'"'~363 

fcn 

Figure 4.7: Example of graphical incorporation of the functional constraint OBJECTAT, with parameters 
instantiated by re-entrant nodes. 

4.10.2. Aspects of Functional Constraints. Technical details of /),8 are discussed in the foIlowing 

subsections. 

4.10.2.1. Delayed Execution. Functional parameters may only become available midway through the 

search process. For example, a function f parametrized by the location of a deixis event, but associated with 

a grammar rule ri that has not yet been unified with a deixis parse cannot be executed until those parameters 

become instantiated. In these cases a 'default' score /),~À) can be retumed by f until its parameters become 

available. This approach is similar to that in Ait-Kaci and Nagr [2]. 

4.10.2.2. Unique Execution. Once a /î,8 function is executed, its retum value is encoded as the value 

of its rooting node. This is a notable exception to regular DAO semantics (§2.1.1), but is useful in avoiding 

repeated calculations and increasing efficiency, since the parameters of an executable function will not change 

through unification. That is, if function f has been executed for graph W, and W is later generalized to Wc, 

or specified to WS , the new fs in WC and WS will not be re-evaluated. 

4.10.2.3. Temporal Constituent Ordering. Certain linguistic entities must occur in a particular tempo­

ral order in order to be evaluated - such as the arguments of a transitive verb, for instance. Clavius, however, 

does not require such temporal ordering. An important function of /î,8 is to be able to enforce these sorts of 

constraints through temporal constraint functions that compare the times of occurrence of parse constituents. 

Table 4.4 shows relations between time intervals, and the functions that implement them, as inspired by 

Nilsson [75]. For example, the basic relation 

(VX, y) [LMEETS(X, y) == (LEND(X) = LSTART(y)] 

is easily defined. Since the time spanned by each parse is stored in a predefined location, aIl these 

functions can be computed in 0(1). 
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4.11. WORDNET ONTOLOGY, /'i,9 

Relation Function, relative to X Function, relative to Y 

1" x "1" v "1 LMEETS(X, Y) LMELBy(Y, X) 

1" X ·1 1" V "1 LBEFORE(X, Y) T _AFTER(Y, X) 

1" x "1 
'4 v "1 LOVERLAPS(X, Y) T _OVERLAPPED_By(Y, X) 

1· x "1 
III V -1 

LBEGINS(X, Y) T..BEGINNED_By(Y, X) 

1· X "1 
III V -1 

LENDS(X, Y) T_ENDED_BY(Y, X) 

'II X "1 
III V -1 

LDuRING(X, Y) LCOTAINS(Y, X) 

1" X "1 
III v -1 

LEQUALS(X, Y) LEQUALS(Y, X) 

Table 4.4: Relations between time intervals, and functions retuming 1.0 in each case, and 0.0 otherwise. 

4.10.2.4. Return values. Constraint functions in "'8 can also be used to modify parameters that are 

passed 'by reference' within the graph and in this way can incorporate new semantic knowledge into parse 

graphs. For example, in Figure 4.7, the 'retum' value of 1 has been written to the indicated node by the 

OBJECTAT function. In this particular case, the OBJECTAT function takes (ordered) parameters 485 and 363 

as the (x, y) co-ordinates ofa deixis event on a screen. It then queries the WORLD database (via COGNITION) 

for the nearest object to those co-ordinates, writes the identification number of this object to the graph, and 

retums a score relative to the distance between (x, y) = (485,363) and the centroid ofthis object2. 

Clavius also supports multiple hypotheses to be retumed in this way from a "'8 constraint function. 

For instance, 'if the (x, y) co-ordinates of a deixis falls between n objects, then an OBJECTSAT function 

embedded in graph \li can force Clavius to replicate \li into graphs \lI1 \lI2 ... \lin, each with a unique object 

id 'retumed' OBJECTSAT, and each with a score reftecting that object's distance to the deixis. 

4.11. Wordnet Ontology, "'9 

For more complex grammars, especially those that allow unconstrained conversational agents, lexical 

relationships may improve the coverage of the grammar. Instead of specifying a particular lexicography as 

being a required word in a grammar, the interaction engineer can specify a synset, or synonymy set of words. 

2In practise, this is computed by a bivariate Gaussian centred at the indicated object. 
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4.13. CONSEQUENCES OF THE OS ALOORITHM 

For instance, by implementing a grammar mIe ri with a word w replaced by {w} (encased in curly braces), 

then any word synonymous with w will be acceptable to unify with ri. 
WORDNET [34] is a free lexical database and reference system relating English words - nouns, verbs, 

adjectives and adverbs, in particular - into synonym sets by lexical concept. Moreover, WORDNET encodes 

the semantic 'distance' between words representing how divergent they are in meaning on a granular scale 

l..Di (for word Wi). Kg therefore is the average inverse distance between ail words Wi in a parse \[1, and the 

'target' words w~ in the grammar rules constructing it, scaled on the average scale size D~. 

Since gesturallexica are generally fairly fiat and sparse, these relations have little applicability outside of 

the primary mode - speech - and even then will only generally become useful as the grammar size increases to 

conversational systems, which has not yet been explored in Clavius. Due to its exclusion in later experiments, 

however - this metric remains only partially implemented. 

4.12. Prosodie Information, KlO 

Prosodie information can be useful in predicting the presence of co-occurring events across modes 

referring to the same multimodal phrase ( §2.2.2). The tracker discussed in §3.5.5 is used to discover sudden, 

sharp shifts in pitch via the Fo contour and produces 'words' Wi that effective1y simply notify the time of 

these shifts. 

The "'10 module promotes partial parses that have prosodie information, where this acoustie pitch shi ft 

occurs in the proximity of lexical events in at least two different modes. The two nearest words to this 

prosodic shift in time are used to compute 11,10 if they come from different modes, according to a Gaussian 

distance metric: 

(4.14) 

0.0 if there does not exist any prosodie tokens Wi in \li, 

if a prosodie token Wi oeeurs only in a unimodal parse, 

for shift centred at time tp , disparate-mode events eentred at times tl and tp • 

This module depends on assumptions based on the literature of such shifts indieating correlation of 

multimodal events[57], but in a strictly unimodal utterance "'10 will have no effect on the ordering of partial 

parses. 

4.13. Consequences of the GS Algorithm 

Certain consequences of Clavius, including the assumptions lifted (§4.1.1) and constraint methodologies 

applied, have unexpected solutions, as described in the following subsections. 
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4.13. CONSEQUENCES 01' THE OS ALGORITHM 

4.13.1. Infinite recursion. In Clavius, infinite recursion manifests itself as expansions in the gram­

mar where the OENERALIZER selects \II such that CAT(\II) = A, and a rule rA: A ---> aA{J, for sorne 

possibly null sequences of non terminaIs a and {J. The new graph produced is in turn generalizable by the 

same rule, rA - and this process recurses infinitely, producing the infinite graph \II' : A ~ a \II {J. 

This is potentially a serious drawback, since methods usually used to combat this sort of problem - such 

as transforming immediate left-recursive grammars into purely right-recursive ones [69], or into terminal-first 

Oreibach normal form (ONF) [44] have no effect since Clavius makes no distinction between the order of its 

constituents 3. In fact, unification grammars for speech recognition have had only mixed success in dealing 

with this sort of problem [31], and infinite recursion continues to be a serious problem for sorne of the most 

modern parsers - such as those using the ISpeech Orammar Format (ISOF) [113]. 

In Clavius this problem is kept under control to sorne extent by the use of the probabilistic grammar 

constraint K;3 (§4.5). For any set of grammar rules C = {rA} for A = 1.. ICI such that \fA, 0 < p(r A) < 1, 

any large arithmetic product will tend to O. Iri theory, one would expect the scorer would eventually 'throw 

away' any \II encapsulating a large number of grammar rules, say ICI >. While it is true that more densely 

packed parses result from /\'3 - it does not necessarily provide a hard constraint against infinite recursion. 

Namely, even if K;3(\II) goes to 0, the parse is not thrown out. The probabilistic grammar constraint, then, 

may be changed to return -00 for very low probabilities. 

4.13.2. Complete Coverage. Any legitimate parsing algorithm must expand every possible gram-

matical construction, given any legal grammar and any legal set of input. This is obvious, but also vital so the 

proof of this capacity in OS Aigorithm is relevant. That is, 

THEOREM 4.13.1. Given an empty search space, and an infinite timeout (T = 00) on the search 

process (the search is never interrupted by COGNITION), the GS Algorithm will produce every possible partial 

hypothesis spanning input (tracker) graphs J = {\Ill, \112, ... \lin}, given grammar r = {rl , r 2, .. .r g}. 

PROOF. If there are undiscoverable parses in the OS Aigorithm, given r and J, then there must be 

at least one 'lowest' undiscoverable parse, \II x such that each of its constituent partial parses (calI this set 

C) is either been discoverable by the OS Aigorithm, or is in J. Each of the parses in C are subject to 

Oeneralization, since aIl graphs begin their 'lifespan' in its subspace. For each \IIi E C, a generalization 

unifying \ft i to the RHS of \II x' s top-level grammar rule, r x will be created since \11/ s top-Ievel grammar 

rule ri must be on the RHS of r x. As these generalizations accumulate in glSInactivel, a process of ICI 
specifications will incrementally unify these generalizaions at the root. The resulting parse consists of r x as 

the top-Ievel rule, with each of C unified to the RHS. This is exactly the parse \II x. Since \II x is discoverable 

3These approaches a1so tend to drastically expand the size of the grammar - hindering performance 
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4.13. ÇONSEQUENCES OF THE GS ALGORITHM 

by the GS Algorithm, there is no 'lowest' undiscoverable parse, hence no undiscoverable parse given rand 

J. o 

Naturally, a benefit of the GS Algorithm's best-first strategy is that it can quickly expand its ideal case, 

and not consider extraneous parses. 

4.13.3. Unique Expansiou. Duplicate nodes are search nodes O'i and O'j in the search space such that 

O'i -1= O'j, but GRAPHOF(O'i) = il'i = il' j = GRAPHOF(O'j). The presense of duplicate nodes would result in 

the slowdown of the GS Algorithm due to redundant processing of \ft i and \ft j in the best case, and complete 

deadlock in the worst, if the number of duplicate nodes becomes prohibitive. 

The condition that ACTIVECONSTITUENTS(il'i)n ACTIVECONSTITUENTS(\ftj ) = 0 was put into place 

to avoid a vulnerability in the GS Aigorithm. Without this condition for specification, a single graph could 

be created via duplicate paths, such as: 

(i) (a) Given il'l : (NP (DT) (NN house)) and \ft2 : (NP (DT the) (NN )). 

(b) Generalize \ft l , giving \ft3 : (8 (VP ) (NP (DT) (NN house))). 

(c) Generalize il'2, giving il'4 : (8 (VP ) (NP (DT the) (NN ))). 

(d) Specify \ft3 and il'4, giving il'5 : (8 (VP ) (NP (DT the) (NN house))). 

(ii) (a) Given il'l : (NP (DT) (NN house)) and \ft2 : (NP (DT the) (NN )). 

(b) Specify il'l and il'2, giving il'3 : (NP (DT the) (NN house)) . 

(c) Generalize \ft3, giving il'4 : (8 (vp) (NP (DT the) (NN house))). 

Both processes 1 and 2 can occur in a single run of the GS Aigorithm, giving identical graphs \ft 5 in the 

first, and \ft 4 in the second. The condition ACTIVECONSTITUENTS (\ft i) n ACTIVECONSTITUENTS (\ft j) = 0 

prohibits step d in process 1 above from occurring, because graphs \ft 3 and \ft 4 have the same active con­

stituent, NP. 

This condition does not change the results of complete coverage (§4.13.2). 
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CHAPTER 5 

Experiments and Analysis 

A suite of experiments has been designed, implemented, and conducted in order to evaluate the Clavius 

framework, and to make predictions on future courses of action. 

This chapter begins by describing the experimental process in terms of the data collection, training and 

testing software, and the methodology employed (§5.1). It then presents the empirical results according to 

various criteria (§5.2) and the effects of training before concluding with a discussion of the implied conse­

quences to linguistics and HCI (§5.3). 

5.1. Experimental Setup 

Over the course of approximately one week, multimodal data was collected through the use of a simple 

instantiated deployment of the Clavius architecture in order to develop an empirical and qualitative analysis 

of the system, and of multimodallanguage. The following subsections describe the collection process. 

5.1.1. Task Description. A graphical software interface called REPLICATOR, shown in Figure 5.1, 

was developed and served as the portal through which multimodal data was collected. Once sorne minimal 

user information is recorded (l), the user is shown two panes: the Target pane (on the left (5» and the Current 

pane (on the right (6» where both panes are populated by a collection of randomly positioned coloured shapes. 

The user's task is to use spoken commands and mouse gestures in the Current pane in order to replicate the 

arrangement of shapes in the Target pane (see §3.1 for a similar interaction schema). 

Table 5.1 summarizes the actions available to the user in REPLICATOR, with the associated effects. User 

utterances only affect the Current pane - the Target pane does not change during the performance of a task. 

The language is further described in §5.1.3. 

abjects come in three shapes: square, circle and triangle, and six colours: red, orange, yellow, green, 

blue, and violet. 



5.1. EXPERIMENTAL SETUP 
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Figure 5.1: Example state of REPLICATOR tool showing 1) user particulars, 2) instructions, 3) system status, 
4) the control panel, 5) the target pane, and 6) the current pane. 

Action Erreet Parameters Example phrase 

Move relocates one or more objects OBJ,LOC "pur'" rhis '" rhere" 

Colour changes the colour of one or more objects OBJ,COL "colour rhese '" '" '" squares red" 

Transforrn changes the shape of one or more objects OBJ,SHAPE "turn the circ/es into triangles" 

Delete removes one or more objects OBJ "delere ail objecrs" 

Create places a new object at a specified target LOC, COL+SHAPE (optional) "put a green drde here ',." 

Table 5.1: Action types available in REPLICATOR. 

There is no software mechanism that determines when the configuration in both panes are satisfactorily 

identical and the task, therefore, complete. Rather, the user decides when to move on to the next task by 

clicking the NEXT button on the control panel (4), at which point both panes are filled with new random 

configurations of objects. This allows for more meaningful data to be collected - as the purpose of the tool is 

not to measure the users' competence in this application domain. 

The REPLICATOR data collection tool was implemented in Java 1.5. 

5.1.2. Trackers and Artificial Noise. In order to keep the data from being corrupted by potential 

problems in video tracking (§3.5.6), a probabilistic mouse-based approximator was used to imitate a more 
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ideal video-based arm tracker. The mouse tracker of §3.5.8 was therefore modified to produce 'pepper' -noise 

in addition to its regular feedback. Specifically: 

• upon a mouse click, graphs 'lI i : i = L.n are produced for n selected uniform randomly on 

1 ~ n:S 4. Ali 'li i are given the timestamp of the mou se click. 'li 1 7 and 'li 1 Y are instan­

tiated according to the precise (x, y) co-ordinates of the mouse click and is hence the 'correct' 

hypothesis for the user's activity. For 'lI2 ... 'lin, these variables are instantiated according to 

an un-correlated (bivariate) Gaussian distribution centred at the mouse click (x, y). Hypotheses 

'li 2 ••• 'lin simulate possible errant hypotheses of an imperfect tracker . 

• at random intervals, item 1 is executed regardless of user activity, except the current (x, y) co­

ordinates are used to instantiate the variables, and n is only selected randomly on 1 :S n :S 3. 

This is done to simulate false positives in video tracking, and the value of n is arbitrary. 

In this way 'errors' in precision (1) and robustness (2) in tracking could be simulated white ensuring 

that recall is 100% (ail actual clicks are correctly encoded). Mouse clicks are represented by the grammar 

type DEIXIS, and a delimited area drawn with the mouse by the type AREA, as discussed in §3.5.8, and 

shown in Appendix B. The latter type of user action is not augmented with artificial noise. 

5.1.3. Language and Configuration. The mouse and speech trackers were integrated directly into 

REPLICATOR, but communicated with Clavius on different threads. The speech tracker was a modified 

CMU Sphinx Engine with the Wall Street Journal-trained acoustic model (512 FFT points, 16K sample rate, 

frequency range 130-6800Hz, with 40 Mel filters). 

The language in REPLICATOR involves five types of utterances, for each of the command types in Table 

5.1. Each of these differ chiefly from each other in terms of the verb structure used. Important phrases in the 

grammar are the OBJECT _REFERENCE and LOCATION non-terminais that include unimodal and multimodal 

references to groups of objects and areas, respectively. Appendix B presents the important rules of the 

grammar used in these experiments. 

Memory Management was deactivated for these experiments, and the minimum score necessary to add 

graphs to the search space was set very low (0.05). 

5.1.4. Recording Mechanism and Data Transcription. Ali mouse tracker activity was recorded to 

specially formatted log files, specified by time, location, and status of the mouse. Ali speech activity was 

recorded to 44.1 kHz wave files by the Sphinx engine from a head-mounted microphone wom by the partici­

pants. During the data collection process, Sphinx was used to both record these files, and perform real-time 

recognition. Since it frequently made utterance-level segmentation errors, ail wave files had to be concate­

nated and re-segmented "by ear" using WaveSurfer [107]. This process is akin to sentence-demarcation in 
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the construction of text corpora and was done here so that utterances could be treated atomically in order to 

measure the sentence-Ievel accuracy of the system. 

A directory was created for each user, in which their wave files and log files were recorded, contributing 

to data set .D. . A data index/transcription file was then created such that each datum .D.i is listed by the ID of 

the user, a reference ta a *wav file (.D.; [> A), indices of gesture events tied ta the multimodal utterance and a 

transcription of the speech. Wavesurfer was also used to segment wave files into a series of time-demarcated 

words (.D.; [> r), and ta transcribe them into their correct interpretations. 

5.1.5. Test Platform. AlI software was run on an AMD Sempron 3000+ laptop at 1.8 GHz with 768 

MB RAM, 128 MB ofwhich is shared with an ATI Radeon XPRESS 200M video card with 2D and 3D video 

acceleration. The operating system used was SUSE Linux 10.0 with the 2.6.13 kernel. The ALSA 1 driver 

was version 1.0.9b for microphone input, and the video driver was the standard Xorg 'radeon' driver that 

ships with the 6.8.2 version of XI 1. The indicated ALSA drivers required an abnormal configuration in order 

to accept input on the indicated platform. 

5.1.6. Participants. Ten human subjects were recruited for the purposes of data collection. Of these, 

3 were female, and 8 were between the ages of 21 and 28 (the remaining 2 were in their mid-50s). AlI users 

use computers daily as part of their work or studies and were therefore familiar with normal WIMP interfaces. 

Each user was paid $4CDN for 15 minutes of their time, although sorne volunteered more data. 

Bach user was provided with a preparatory form to read before commencing that described the physical 

setup of the environment. It was emphasized that that there was no "desirable" behaviour on their part in their 

interaction with the system, nor were example phrases suggested - in order to elicit more spontaneous phrase 

types. 

5.1.7. Analysis Methodology. The primary source of empirical analysis derives from observing 

changes in accuracy rates as each scoring module "'i is reparametrized individuaIly, as weIl as through the 

joint weighting of aIl Wi together. Recall that a particular set Wi --> ~ mappings for each Wi assoc~ated with a 
-+ 

module is represented by the vector n. 
Four scoring modules were not included in basic system analysis. Specifically, "'6 (multimodallanguage 

model) and "'9 (wordnet ontology) were omitted because to really take advantage of either of these modules 

would require much more complex vocabularies on the order of several thousand entries. "'7 (dialogue mod­

elling) was also omitted because a) the interaction schema is strictly unidirectional command-driven and b) 

there is no justification to assume that any command is a function of the previous n commands, since the tasks 

described in 5.1.1 are essentially uniform random. FinaIly, "'10 (prosody) is not part of these experiments, 

due to discrepancies in the autocorrelation method on which it depends. 

1 Advanced Linux Sound Architecture 

64 
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The methodology used operates under the assumption that the effects of each scoring module are inde­

pendent of aIl others used, therefore the parameters of each can be trained in isolation. The overall process is 

decomposed according to the three steps described in the following three subsections. 

5.1.7.1. 1 st joint reparametrization of weights. InitiaIly, parameters x:~p) are hand-tuned for each 

scoring module. Hand-tuned parameters in this context can be considered pseudo-random, since they were 
-+ 

not derived from any theoretical or data-driven motivation. Five initial distributions of scoring weights ni are 

also determined in this way, as shown in Table 5.2. Although in aIl cases W2 = 0.0, X:2 (ancestry constraint) 

is still active, providing a 'hard constraint' , as discussed previously. Measures of accuracy and performance 
-+ 

(see §A.2.5) are recorded using each of these ni. 

Config Wl w~') W3 W4 Ws WB 

S"h 0.4 0.0 0.3 0.1 0.1 0.1 
-+ 
S"h 0.2 0.0 0.1 0.3 0.2 0.2 
-+ 
rh 0.1 0.0 0.3 0.3 0.15 0.15 
-+ 
04 0.2 0.0 0.2 0.2 0.1 0.3 
-+ 
Os 0.1 0.0 0.1 0.1 0.3 0.4 

Table 5.2: Five weight configurations for Wi in the scoring function. 

-+ 
The first phase of training involves the joint reparametrization of ni for i = 1 .. 5 using a simple single-

-+ 
layer feed-forward neural network as shown in Figure 5.2. The weights in this network are initialized to ni 
and are adjusted according to standard error backpropagation (§A.1.2). For each datum D.i in the training 

set, the wave file and gesture events are played to the speech and mouse trackers via 'control' scripts, and the 

resulting interpretation \[1 produced by Clavius is compared against the human transcription. If the interpre­

tation is correct, the desired output of the training network is 1.0, otherwise it is 0.0, with inputs set to the 

values of X:i(\[I). 

1 if 4J
h 
correct, 0 otherwise 

Figure 5.2: Two-Iayer neural network used in reparameterization of scoring weights. 

-+ 
Accuracy and performance are again recorded at the end of this process, given ni. In aIl cases, analysis 

was performed on a random selection of 230 test samples, with the remaining 2074 being used for training. 
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Training oceurs in stages where each element of the training data set is presented to the network. Training 

is halted when 5 subsequent stages have not improved the training set accuracy by at least 1 % absolutely. 

Overfitting was not taken into account. 
-t 

5.1.7.2. Individual training of each module, "'i. Once n has been optimized for the pseudo-random 

module parameters ",~p), these are then individually tuned according to appropriate techniques, discussed in 

detail where appropriate in §5.2.2. 

5.1.7.3. 2nd joint reparameterization ofweights. The second round of weight reparametrization es-

sentially repeats §5.1.7.1, except individual module parameters have been adjusted according to §5.1.7.2, and 
-t 

the weights between them, n remain unchanged since their optimization in §5.1.7.1. 

5.2. Empirical Analysis 

In total, the 2.5 hours of recorded speech and gesture data was partitioned into 2304 multimodal utter­

ances. This averages to only 3.91 seconds per utterance, which is partially explained by the simplicity of the 

phrases used as discussed in §5.3.2. Table 5.3 shows a breakdown of ail utterances (training and test sets) by 

the type of action. A small number of utterances conjoined action types, as discussed in §5.3.4. These pro­

portions are more indicative of the general strategy used with REPLICATOR than generally applicable, as they 

indicate only that within the test application users tended to delete objects and create new ones, rather than 

transforming those that already were present in the 'cuITent' canvas. This phenomena is partially discussed 

in §5.3.2. 

action total occurrences test set occurrences 
Move 493 (21.4%) 53 (23%) 

Colour 458 (19.9%) 51 (22.2%) 
Transform 82 (3.6%) 9 (3.9%) 

Delete 674 (29.3%) 66 (28.7%) 
Create 529 (23.0%) 53 (23.0%) 

Move + Colour 45 (2.0%) nia 
Create + Colour 23 (1.0%) nia 

Table 5.3: Partition of utterances by action type, where conjunctions combined different action types 3% of 
the time (these were included separately in the test set). 

Table 5.4 shows a breakdown of how multimodality was used, and in what proportion, according to 

grammar rule. Certain actions necessitate certain grammar types to be used (movement requires an OB­

JECLREFERENCE, for instance), but many utterances made reference to several objects, for example. Most 

unimodal phrases were speech-only, although sorne were mouse-only (ex. "'\, '\," recognized as a move). 

Clearly, references to location are almost invariably multimodal, although references to objects were 

unimodal roughly 17.9% of the time. This may indicate that users find vocalizing object properties easier than 
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grammar type multimodal expression occurrences (% within group/% total) 
unimodal (ex. "the red square") 343 (17.9% /11.3%) 

OBJECT _REFERENCE speech+click (ex. ""."this square") 1474 (76.8% /48.6%) 
speech+multiclicks (ex. "these "." "." ".,,") 102 (5.3% /3.4%) 

LOCATION 
unimodal (ex. "".,,") 18 (1.6% /0.6%) 

speech+click (ex. "here ".,,") 1093 (98.4% /36.1 %) 

Table 5.4: Usage of multimodality, according to grammar rule. 

specifying precise location. This is contrasted with other work that suggests that users interact multimodally 

with object references only 50% of the time [102]. The preponderance of multimodal rather than unimodal 

reference to location in the data is a confirmation that humans make frequent use of gestures to complement 

physical descriptions in space, as introduced in Chapter 1. 

5.2.1. First Round Reparameterization. The initial accuracy of randomly initialized configurations 

of Clavius are compared against a 'baseline' performance of an unoptimized Sphinx system (using a unimodal 

grammar projection) in Figure 5.3. In aU cases, accuracy rate is the proportion of sentences who se semantics 

are correctly interpreted. Although this is not a word-based measurement (word insertions and deletions are 

not counted, for example), it tums out that determiners are the only words whose presense or absense are 

irrelevant to the semantic interpretation of a sentence. 

Ignoring function words such as determiners does not affect the semantic meaning of the utterances in 

these experiments. 

Phrases that conjoined action types A and B for A =f B were counted twice. 
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Figure 5.3: Initial accuracy rates for unimodal Sphinx versus random initial weight configurations, parti­
tioned by action type. 
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The overall accuracy rate of unimodal Sphinx was 71 %, which was 22% better absolutely than the 
--> --> 

worst initial Clavius configuration (n 1) and just 6% worse absolutely than the best (n 3). The best rec-

ognized action type was delete with an average recognition rate of 74%, and create the worst at 60%, on 

average. These results are summarized in Table 5.5. Actions invoking colour and shape fared worst, with 

over 65% of their errors being replacement errors 2 on the colour adjective. 
---+ --+ ----t --+ 

On the training set during weight updates, n 1 converged to n ~ in 12 iterations (+20%), n 2 to n~ 
--+ ---+ ---+ --+ --+ 

in 10 iterations (+ 17%), n 3 to n ~ in 9 iterations (+ 13%), n 4 to n ~ in 11 iterations (+ 16%), and n 5 to 
--> n ~ in 12 iterations (+19%), as shown in Figure 5.4. After reparametrization, each of the 5 new weight sets 

--> --> --> 
were presented with test data. On this set, n ~ improved on n 1 by 7.8% RER (§A.2.5), n ~ improved on 
--> --> --> --> --> --> n 2 by 11.4% RER, n ~ improved on n 4 by 14.6% RER, and n ~ improved on n 5 by 15.6% RER, but n ~ 
performed worse than the initial estimate by -4.3% RER. 

0.9 

0.85 

0.8 

>- 0.75 
r.! ... 
:::l 0.7 

~ 0.65 
t» c.: 
:i 0.6 

... 
0.55 1-

0.5 

0.45 

OA 

Iteration 

Figure 5.4: Motion of accuracy on training data, for each set of weights, over iterations of the training data 
set .6.. 

These results show that, in general, training results in more accurate recognition rates on both the train­

ing and test sets, although training convergence appears slightly shallow and quick, and relative error reduc­

tion is lower than expected, given the low initial recognition rates. 

5.2.2. Accuracy Maximization on I\;h 1\;3,1\;4 and 1\;5. Of the trainable scoring modules used, tem-

poral alignment (1\;1), input coverage (1\;4) and entropy (1\;5) are specified by parameters I\;~c) controlling their 

2See 'Precision' in §A.2.5. 
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behaviour. Each of these is updated sequentially and in isolation from the others according to an iterative 

steepest-ascent (hill-climbing) metric of the overall accuracy rate on the training data, as a function of the 

I\;~c) in question. 

Specifically, when .updating I\;~c), all values of I\;)c) for j i= i are kept constant. The accuracy rate with 

I\;~c) is compared against accuracy rates for I\;~c) + E and I\;~c) - E for sorne small E. If the accuracy of either of 

these neighbours is higher than that of I\;~c), then I\;~c) is set to its best performing neighbour and the process 

is repeated. If I\;~c) results in a better accuracy than its neighbours, then E +- ~. This process is repeated as 

long as E > 0.01, which is a constant threshold across aIl modules. 

Naturally, this process leads to local maxima, which may be prevalent in the accuracy rate functions 

under consideration. Final parametrizations were found to be x:~c) = 2.17, x:~c) = 0.32, and x:~c) = 0.8. Note 

that I\;~c) = 0.32 appears to favour discrimination between somewhat longer sentences, falling between the 

two lower curves of Figure 4.4. The Gaussians resultant from training temporal alignment were also much 

wider than expected (x:~c) acts as a multiplier on standard deviation). 

5.2.2.1. Maximum Likelihood on Grammar Rules (1\;3). The probabilistic grammar constraint (1\;3) 

is parametrized by the probabilities of each rule in a given grammar. Specifically, to estimate P(f i,j) for 

grammar rule fi,j : NU) <--- ((i), one counts the number of occurrences of fi,j in the training data, and 

divide by the number of occurrences of NU). This can be accomplished in a single step and is numerically 

stable with regards to the data. 

Within the context of Clavius, X:3 promotes the processing of new input words and shallower parse trees. 

Effects ofthese reparametrizations on the overall accuracy are summarized in Figure 5.5. 

5.2.3. Second Round Reparametrization. Overall accuracy increased again after a second round 

of parametrizations on individually trained modules, as expected. A summary of the accuracy rates for each 
-4 ni set over the four stages of training is provided in Table 5.5, along with a comparison of the best and worst 

relative error reductions according to each task type as measured against performance of the baseline Sphinx 

system. Weighted average refers to the total performance of the indicated configuration and not the arithmetic 

mean of the 5 task scores. 

Table 5.6 shows the final weight configurations for each Wi in the scoring function after the second 

reparametrization. These weights did not change as drastically as one might expect and they certainly did not 

converge towards an apparent stable point. A possible explanation for this behaviour is put forward in §5.3. 

The change in relative error reduction provides insight into the effects of learning on Clavius, where 

error reduction is always measured relative to a single baseline, the performance of Sphinx. Figure 5.5 shows 

this change, and emphasizes that the primary source of error reduction appears to come from reparametrizing 
---4 

weights ni> rather than from individual training of modules. In fact, error levels for the five sets increased 
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System 1 Move 1 CoJour 1 Transform 1 DeJete 1 Create Il Weighted Average 1 

Sphinx 1 0.85 1 0.61 1 0.67 1 0.83 1 0.72 Il 0.76 1 

!"h 0.64 0.55 0.56 0.61 0.40 0.56 
-+ 
!"h 0.72 0.57 0.67 0.67 0.53 0.63 
-+ 
0 3 0.89 0.84 0.78 0.92 0.79 0.87 

Initial -+ 
0.74 0.67 04 0.72 0.67 0.56 0.55 

-+ 
0 5 0.58 0.59 0.56 0.68 0.62 0.63 

BestRER 0.25 0.60 0.33 0.55 0.27 nia 
WorstRER -1.75 -0.15 -0.33 -1.36 -1.13 nia 

O~ 0.70 0.61 0.56 0.68 0.42 0.61 

n~ 0.79 0.65 0.67 0.71 0.57 0.69 
-+, 

0.89 0.82 0.78 0.80 0.89 0.85 0 3 
First Reparametrization ->, 

0.77 0.71 0.67 0.82 0.62 0.74 0 4 
->, 
0 5 0.64 0.69 0.67 0.74 0.70 0.70 

BestRER 0.25 0.55 0.33 -0.09 0.6 nia 
WorstRER -1.38 0.00 -0.33 -0.91 -1.07 nia 

O~ 0.68 0.61 0.67 0.68 0.43 0.61 

n~ 0.77 0.63 0.67 0.71 0.53 0.67 

n~ 0.89 0.84 0.78 0.80 0.81 0.84 
Tuned K, 04 0.75 0.71 0.67 0.77 0.64 0.73 

o~ 0.68 0.67 0.67 0.73 0.66 0.69 
BestRER 0.25 0.6 0.33 -0.18 0.33 nia 

WorstRER -1.13 0.0 0.0 -0.91 -1.0 nia 

O~ 0.70 0.65 0.67 0.70 0.47 0.64 

o~ 0.79 0.69 0.67 0.76 0.60 0.72 
-+" 0.87 0.84 0.78 0.83 0.89 0.86 0 3 

Second Reparametrization oZ 0.79 0.75 0.67 0.82 0.62 0.75 

o~ 0.66 0.71 0.67 0.74 0.68 0.70 
BestRER 0.13 0.6 0.33 0.00 0.60 nia 

WorstRER -1.25 0.1 0.00 -0.82 -0.87 nia 

Table 5.5: Accuracy rates for Sphinx and Clavius across the four stages of training of the latter, according to 
various parametrizations, partitioned according to task. 

during individual training, although this may also be an issue of local maxima on non-smooth accuracy rate 

functions. This might imply that scoring modules are more co-dependent than initially theorized. 

5.3. Investigative Analysis 

The degree to which the joint reparametrization of scoring weights appears to be preferable to individual 

training of scoring modules (§5.2.3) as a means of improving performance is surprising, and highlights a 

possibly problematic phenomenon in Clavius, namely, correlation phenomena between scoring modules K,i. 

These modules are not necessarily independent, due to common conditioning variables in the parses they 

co-evaluate. 
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Config Wl wr) W3 W4 Ws Ws 

O~ 0.31 0.0 0.27 0.16 0.20 0.06 

n~ 0.19 0.0 0.16 0.27 0.17 0.21 

n~ 0.10 0.0 0.30 0.30 0.18 0.12 

n~ 0.21 0.0 0.17 0.22 0.14 0.26 
-+" 05 0.16 0.0 0.11 0.12 0.26 0.35 

Table 5.6: Fivefinal weight configurations for Wi after reparametrizations. 
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Figure 5.5: Change in Relative Error Reduction for the configurations 

For example, the probabilistic grammar criterion ("';3) prefers parses that minimize the number of gram­

mar rules applied, since each additional rule multiplicatively decreases the score. Contrariwise, the coverage 

criterion ("';4) prefers parses that maximize the number of input words used. This particular dichotomy is the 

result of partial qualification, but is indicative of larger issues related to the computation of scores. Likewise, 

the informativeness criterion ("';5) is theoretically opposed to temporal proximity ("';1) since it promotes the 

combination of disparate rather than shared information. This is partially played out in the data, as Figure 5.6 

demonstrates an apparent correlation between accuracy and (max(w3 ,w4)-min(w3 ,w4))~«max(wl ,ws)-min(wl ,ws)) 

which is the average difference between weights of these theoretically 'competing' modules, although this 

behaviour might also be the result of other factors. 

The sections that follow discuss other aspects uncovered during data analysis. 
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Figure 5.6: Relationship between accuracy and the average difference between weights of 'competing' mod­
ules (W3, W4), and (Wl, W5). 

5.3.1. Work Expenditure. To test whether the best-first approach compensates for Clavius' looser 

constraints (§4.1.1), the bottom-up chart parser of Algorithm 4 (§2.2.3) was constructed and the average 

number of edges (partial parses) it produces on sentences of varying length in the whole data set ~ was 

measured. This value approximates the expected work expenditure in GEMINI [32], SmartKom [116] and 

Johnston [49]. 

Measures on the chart parser were compared against two measures of Clavius. First, the average number 

of edges Clavius produces (across aU parametrizations of §5.2.3) before the parse it eventuaUy returns is found 

is recorded for each sentence length. This represents a near-optimal bound on performance of Clavius, as it 

would ideaUy make its decision as soon as possible. However, more parses are added to the search space 

before Clavius returns its decision, so this value is also recorded as a practical indicator of average work 

expenditure. 

Figure 5.7 summarizes these results. In particular, although Clavius generally finds its accepted parse 

relatively quickly ('Clavius - found'), the cognition module will de1ay its acceptance ('Clavius - accepted'). 

The length of this overhead grows with sentence length, from near 0 for sentences of length 2 to over twice 

the number of edges needed to find the parse. 

The main factor in the proportional increase of overhead with sentence length appears to be more empty 

constituent edges appearing as a result of necessarily more complex grammar constructions. In order to 

reduce the amount of work actually performed by Clavius, either tighter restrictions on the aUowance of 
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Figure 5.7: Average number of edges expanded, given sentence length. 

null constituents need to be enforced, or the cognition module needs to be modified to make its decisions 

more quickly. Although in practise Clavius does more work than an all-paths bottom-up multidimensional 

chart parser for longer sentences, it appears comparably efficient for sentences up to length 8, and a more 

appropriate sentence-acceptance mechanism in the cognition module may improve performance. 

This measurement is an important indicator of Clavius' performance relative to state-of-the-art tech­

niques, specifically those mentioned above. In particular, it demonstrates that the best-first process narrows 

the search space and finds its solution relatively quickly, expanding only about 39% of the number of edges 

the chart parse model creates for the longest observed sentences. 

5.3.2. Questions of Grammatical Usability. The majority of sentences spontaneously uttered by 

most users were simplistic (see §5.3.4), as was expected. In fact, the grammar of Appendix B was built 

based on this assumption and covers 2248 (97.6%) of the utterances collected. It is not presently clear 

whether sentences were simple because of the imperative command structure aIl users assumed, or because 

of multimodality itself. Use of pronouns, definite NPs and tense are typical aspects of language speakers 

employ to simplify expressions through context, but only pronominal references to objects were seen during 

this study. Uni modal and conversational multimodal data would help categorize these effects. 

Experiment participants were able to express themselves in more complex, compound phrases (ex. 

"move this "" triangle here "" and ma/œ it a blue square") but typically decided to split their commands 

into two separate phrases. Participants also often opted to delete existing objects and create new ones rather 

than use the move command coupled with the transform command (ex. "de/ete this "" triangle" and a "put 
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a blue sphere here '\."), which may explain the relative proportions of commands, in Table 5.3. Similarly, 

although participants were able to use the AREA gesture to select multiple objects simultaneously (§3.5.8), 

only 1 user discovered it, using it only twice. 

Finally, there were 877 (38.1 %) instances where dysfluencies (other than artificial noise) occurred. Of 

these, 814 (92.8%) were not part of the sentences accepted by Clavius. Of those 63 that were accepted, 48 

constituted simple insertion errors, and the remaining 15 were incorrectly combined with adjacent words by 

the Sphinx tracker, resulting in substitution errors. The ability to ignore dysfluencies in Clavius is a notable 

boon to seamless interaction, and appears to be a result of the partial qualifications discussed in §4.1.1.3, 

which is especially relevant in noisy environments. 

5.3.3. Co-occurrence statistics. From the literature, one expects a close correlation in time between 

the occurrence of deictic gestures with the pronominals or nouns with which they co-refer semantically (1\",1 

is based on this assumption). In fact, literature suggests that the relative order of spoken and gestured ex­

pressions are dependent on modality, namely that deictic gestures precede associated keywords in pen-based 

systems [81], while overlapping or following them 97% of the time in large-screened environments with arm 

gestures [101]. 

Figure 5.8 compares onset time between speech and gesture between Holzapfel et al. [43] and Clavius 

using the domain (bins covering periods of time of 0.24 seconds) and range (percentage of occurrences3) 

of the former. Holzapfel et al. suggest that arm gestures often occur anywhere between 0.5 seconds before 

speech to 0.7 seconds after it, with an apparent preference for precedence. This is notably contrasted with 

REPLICAToR/Clavius, where gestural mouse activity follows the beginning of a spoken co-referring word 

(ex. "this", etc.) 90.9% of the time in a near-Gaussian distribution centred between 0.72 and 0.96 seconds 

after the onset of speech . 
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Figure 5.8: Comparison of onset times of arm gesture (from Holzapfel et al.[43], left) and of mouse gesture 
(right) following associated speech keywords. 

3This metric is inferred from [43], as they do not label their y-axis properly. 
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These results almost indicate the reverse of what one expects, since the literature suggests that speech is 

generally followed by arm gestures, and preceded by hand-held device input. 

In Clavius, over 74% of mouse events in multimodal commands occurred after the end of the co-referring 

speech part, indicating an apparent sequential approach of users to multimodality. This May be partially 

explained by the familiarity of aIl users to standard WIMP interfaces that generally 'expect' sequential modes 

of interaction. However, for '2-word' phrases, such as "red '\," or "delete '\,", gestures on average occurred 

du ring the spoken word, or preceded its onset 9 1 % of the time. Therefore, it appears that temporal proximity 

is dependent both on device and on phrase type. 

5.3.4. Sentence structure. In §2.3.3, references in the literature were discussed that suggest that 

an important dichotomy between multimodal and unimodal spoken language is the use of locative con­

stituents, especially in prepositional phrases. Namely, locatives are often moved to a sentence-initial position 

in pen/voice input - changing S-V-O-LOC word order to a LOC-S-V-O one. 

Unfortunately, the data collected for Clavius did not really include any subject arguments of verbs, 

since aIl sentences were effectively verb-initial imperative command driven sentences. This sentence type 

also effectively prohibits locatives from occurring before the verb. However, one can still measure whether 

the participants altered their expressive grammar with regards to the position of locatives relative to the object 

reference, between unimodaland multimodal cases. 

AlI move and create commands used locatives, with 2 occurring with deletion. Table 5.7 summarizes 

the behaviour of locatives within the context of REPLICATOR. Note the interesting presence of phrase type 

O-LOC, where the absent leading verb can be inferred from its two arguments. In addition, the vast majority 

of delete commands, and 64 create commands, did not use any locatives whatsoever. 

Action 
Unimodal Locative Bimodal Locative 
Example Number Example Number 

V-LOC-O create "put'\, square" 5 "put here '\, a square" 1 
move "put this '\, '\," 1 "put this '\, there '\," 516 

V-O-LOC create "put a red square '\," 8 "put a red cube here '\, " 474 
delete NIA 0 "delete aU objects in '\, this area ./" 1 

V-LOC delete "delete '\, ./ " 1 NIA 0 
O-LOC move "'\, '\," 3 "this '\, the re '\," 18 

Table 5.7: Use of locatives in various sentence structures, according to the arity of the locative. 

5.3.4.1. Conjunctions and Fragments. Conjunctive sentences of the form "S and S" occurred 120 

times, 68 of which combined disparate action types (ex. "move this '\, here '\, and colour it green"). Ofthese, 

40 were interactions on a single object that employed anaphoric pronouns ("it"), suggesting preference for 

cognition of objects rather than actions. In aIl but three cases these involved one conjunction, but in three cases 
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it involved two conjunctions of the form (8 Sand (8 Sand S)). The relative rarity of conjunctive phrases 

is to be expected, and emphasises that participants favour simplistic, short phrases in this environment. 

Sentence fragments occur frequently in natural speech, for instance a verb phrase lacking a direct object. 

Since Clavius supports 'partially complete' representations at the sentence level, these types of sentences 

should be decipherable, or at least the application could counter appropriate1y with a request to parametrize 

the verb (ex. ''l'm sorry, which object should 1 delete?"). Selectional constraints might even be used to 

approximate the meaning of an unknown word. In this regard, more data would be required to draw any 

deeper conclusions, as weIl as a standard analysis method for classifying locative phrases across multimodal 

and uni modal contexts. 
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CHAPTER 6 

Concluding Discussion and Remarks 

This thesis describes a software architecture built to interpret multiple modes of input generically, as described 

in Chapter 3. The mechanism used in this interpretation is a new multi-threaded and bidirectional parsing 

algorithm on graph-based unification grammars that follows a best-first approach according to a combination 

of scoring metrics, described in Chapter 4. 

Results from experiments reveal several features of Clavius, discussed further in §6.1 and its subsections, 

that indicate both a satisfiable general level of applicability, but also several important limiting practical 

factors. For instance, while certain configurations of Clavius achieve better accuracy than a baseline system, 

others consistently fare worse, even after training. The complexity of the system leads to several apparent 

'hidden' variables (see §5.3) related to dependencies beyond the layers of the XML grammar and scoring 

modules. 

The design of grammars for Clavius is also non-trivial as unexpected consequences can easily result 

from casual grammars. For example, rules ri and r j having a high degree of RHS overlap can easily create 

a glut in the search space if care is not taken to necessitate the presence of distinguishing (usually head) 

words. For example, the determiner 'the' might be present in both object_reference and location 

rules, and if in sorne utterance it is part of one, parses assuming it is part of the other should be limited. 

Otherwise, the search space can very quickly be dominated by irre1evant parses, from which Clavius might 

pull an incorrect sentence decision. 

The painstaking construction of grammars in this fashion may also indicate that generalizing the process 

arbitrarily to new applications is also non-trivial. At this point there remains no single or best generalization to 

the problem, however multi-component architectures, like Clavius , have recently been gaining in popularity. 

The GS Aigorithm has performed reasonably admirably, given the novelty of the parsing algorithm. The 

overview of its key features in §6.1 is followed by a summary of interesting avenues open to exploration in 

§6.2. 



6.1. FEATURES OF THE GS ALGORITHM 

6.1. Features of the GS Algorithm 

Multiple distinguishing behavioural features characterize the GS Aigorithm. These are consequences of 

decisions described in §4.1.1 and are summarized below. 

6.1.1. Asynchronous collaboration. The bidirectional nature of the GS Aigorithm differs from those 

of Satta [97] and Rocio [91], for example, except that its asynchronous and distributed nature reduces several 

processing bottlenecks. Namely, allowing these processes to be performed simultaneously has resulted in 

quick discovery of accepted parses, for instance, and avoids thread starvation. The modular nature of its 

scoring functions allows Clavius to incorporate quite disparate approaches and knowledge sources in the 

field, from acoustic prosody to statisticallinguistic information. 

A few scoring modules /'i,i have different behaviours depending on whether they were invoked by the 

generalizer or the specifier. This has not yet been detrimental to the process, but since the resultant graphs 

are always put into the generalizer's search space first, correct internaI ordering would be preferable in the 

long-term. 

6.1.2. Unordered constituents. Ignoring ordering of constituents 'Yi in the RHS of rule ri is perhaps 

the most controversial decision in Clavius, since fundamental and often essential syntactic constraints are 

inherent in the traditional arrangement. While these syntactic constraints can easily be replaced by the use of 

constraint functions, this might appear to be an unnecessary step. 

This aspect of the GS Aigorithm still serves as an integral part of the system that effectively handles 

permutation of multimodal word order and the admittance of unexpected phrase types. Early unquantified 

observation during development suggests that another resultant phenomenon is that parses incorporating lead 

words, such as head nouns, command verbs and pointing gestures in particular, are emphasized and form 

sentence-Ievel parses early, and are later 'filled in' with function words. 

6.1.3. Unspecified edges. The process of generalization produces parses that instantiate top-Ievel 

grammar rules where only one constituent is non-null. This, in combination with a best-first strategy based 

on several scoring criteria and unordered constituents approximates a dynamic programming approach to 

multimodal interpretation. This is confirmed in Chapter 5 by the speed with which Clavius discovers its 

accepted sentences, relative to current approaches in chart parsing. 

6.1.4. Constraint Functions. The implementation of /'i,s in Clavius provides a unique graph-theoretic 

implementation of constraint functions in the À calculus. To be effective, when values returned from one 

function parametrize others, it is necessary to evaluate the master term recursively until no fully parametrized 

functions remain unevaluated. 
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Secondly, it is important that "'8 evaluates the entire disjunction of aIl constraint function terms present 

in a given parse. If this were not the case, constraints that were applied during evaluation would always 

be 10s1. This can be accompli shed by applying the multiplication operator on each of the constituent and 

top-most terms. 

6.2. Possible Future Explorations 

There are several avenues open to Clavius for future exploratory endeavours that extend beyond the 

goals of this thesis. These are broadly c1assified into computational, linguistic and interactive subjects. 

Computational Aspects. Currently, once a partial parse \li is given a score that remains fixed through­

out the life cycle of that graph, until it is removed from the search space. To truly take advantage of the 

real-time recognition capability of Clavius, allowing scores to change dynamically as new information is pre­

sented to the system would, in particular, push out semantically incongruous parses by lowering their scores 

to 0, or thereabouts. Doing so, however, would either incur a substantial computational co st or necessitate 

specialized semantically indexed data structures whose behaviours are left to future consideration. 

Furthermore, as described in §3.9, Clavius transparently lends itself to complex multi-processor archi­

tectures, but this aspect has not yet been especially explored. A different computational model of the score 

(§4.2) might also address issues of codependency observed during experimentation. One possible such candi-
--+ 

date is to use a hidden layer in the joint reparametrization of ni (§5 .1.7.1), which is the standard approach to 

allaying non-linearly separable classes in neural networks. A more measured approach to individual module 

parametrization (§5.2.2) would also be advised. 

Linguistic and Interactivity Aspects. Certain linguistic questions lie beyond the scope of this thesis, 

primarily those related to context. AlI language in Clavius is constricted to simple verb-initial imperative 

command phrases, whereas the GS Aigorithm is desigiled to inhabit the same c1ass as general text parsers. 

In order to evaluate its potential in this space, more complex linguistic phenomena need to be analyzed. In 

particular, long-distance dependencies and proper anaphora resolution co-referring entities and concepts are 

open areas. Currently, concatenating multiple sentences together can be used to force unification on two 

semantic entities deterministicaIly, but more applicable approaches exist to this problem. New grammars 

need to expand to coyer more general phrases, such as those popularized in the Wall Street Journal corpus, 

and be applied to more general application contexts such as conversational agents. 

Other areas of linguistic interest inc1ude the use of the subsumption architecture between scoring mod­

ules "'i. such that "'i can selectively apply ~[o .. 11 multipliers on sorne set {"'j Ilj t= i}, effectively de-activating 

certain modules under particular conditions. If grammatical selectional constraints, for example, override lan­

guage modelling, the former can nullify the effect of the latter with a 0 multiplier. This has a direct effect on 
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the interpretation of the language. Elements of compositional and generative semantics also play a role, for 

instance in cases where discourse entities cannot be immediately instantiated in the world. 

Finally, further investigation into alternate methods of sentence acceptance in the augmentation of the 

COGNITION module would take advantage of Clavius' speed in this regard, and may more effectively utilize 

inherent benefits of cross-modal information in increasing current accuracy rates. 
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APPENDIX A 

Essential Background 

Certain aspects of this thesis assume a certain level of understanding of fundamental mathematical and lin­

guistics concepts. Some of these are assembled here for the elucidation of the curious reader. 

A.I. Mathematic Essentials 

In this section we briefty review two key areas of graphical models and probability theory as they relate 

to fundamental concepts in CLAVIUS. 

A.I.I., Graphical Models. Graphs pervade much of computer science and engineering and are used 

extensively in CLAVIUS by virtue of their use in representing ail user activity. The structure of the type of 

rooted graphs used in CLAVIUS were provided in §2.1. Most of the usage of these graphs involve traversaI 

down from their roots to extract particular information, although certain classic graph algorithms, such as 

Dijkstra's shortest-path algorithm [26] play roles in its implementation. Some relevant aspects are discussed 

in the following subsections. 

A.1.l.l. Size Bounds on CLAVIUS DAGs. 

THEOREM A.l.I. For directed, and acyclic graph 'l1a with a set ofnodes N, INI(I~I-l) > l'l1al ~ 
INI-l 

PROOF. Proof of this comes in two steps: 

• l'l1al ~ INI - 1 proved by induction. If INI = 1 ('l1a is atomic), then it has 0 ~ INI - 1 

edges. Then, we assume that we have some subgraph 'l1~ with INI - 1 ~ 0 nodes such that 

1'l1~1 ~ INI- 2. If we add a new node to 'l1~, forming 'l1a, then that node must be connected to at 

least one other node by an arc, thus l'l1al ~ 1'l1~1 + 1 ~ INI- 2 + 1 = INI-l. 
• INI(I~I-l) ~ 1'l1 al by a mechanism similar to that used in the Pidgeonhole Principle [92]. Namely, 

given a set of INI nodes, we attempt to add as many arcs as possible. Initially, with 0 arcs, we 
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can pick any node and draw it's maximum number its outgoing arcs - namely directed arcs to the 

INI - 1 other nodes. Assuming that after drawing the maximum allowable number of outgoing 

arcs for the first n nodes, then the maximum number of arcs we can add for the (n - 1) th node 

x is INI - n - 1 - because the first n nodes all already point to x - and we cannot allow cycles 

or reflexive loops (no arc from x to x is allowed). In this way, we get a maximum max 1 \lia 1 = 
IN-li 
'" n = INI(INI- 1) [99] 
L...J 2 . 
n=l 

o o 

A.I.2. Optimization. Experiments in CLAVIUS included the use of simple single-layer feedforward 

neural networks without explanation of how they are trained (§5.1. 7 .1), due to the somewhat tangential nature 

of their details. 

This network was trained using a simple linear step and binary decision rule as output, o. Specifically, 

given weights Wj E ~[o .. 11 and activations aj E ~[o .. 11 (the latter are determined from the appropriate "'j 

functions), then 

(A. 1) 
{

o if~Wjaj < (J, 

1 otherwise. 

The parameter (J = 0.8 for the given experiments. For a set of data ~, if instance ~i is recognized 

correctly then Wj is left unchanged for aIl j. If, however, the proposed sentence recognized by CLAVIUS does 

not provide the correct lexography, then the update rule Wj <- Wj + O'.aj adjusts the network weights, given 

sorne learning rate parameter 0'. 1. More introductory information can be found in [95]. 

A.I.3. Derivation of KuIlback Leibler. The symmetric Kullback-Leibler divergence is utilized in 

one of CLAVIUS' scoring modules ("'1, §4.3). Its partial derivation is provided here. Remembering that 

(i) ~ J e- (X~/f/ dx = 1 
UV 211" 

(ii) if X is a continuous random variable, and f(x) is the value of its probability density at x, then 

the expected value of g(x) is E [g(X)] = J g(x)f(x)dx [35] 

(iii) (J"2 = E [X2] - E [X] = E [X - E [X]2] = E [(X - Jt)2] 

substituting the Gaussians, gives 

1 There is no derivative of an activation function, since the threshold function is non-differentiable 
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1 J -(w-~d )2 0'2 ("'_1,~)2 _ (œ-I'~ )2 ) 
KL (NtIIN2 ) = -- e 2"1 log -e 2"2 2"1 dx 

0'1 V21r 0'1 

_ \1 J _(w;:~)2 [1 0'2 + (X-J1,2)2 (X-J1,1)2] d 
- --- e 1 og - 2 - 2 X 

0'1 V21r 0'1 20'2 20'1 

1 
0'2+ 1 J _(œ;~,~)2 [(X-J1,2)2 (X-J1,1)2]d 

= og - -- e 1 2 - 2 X 
0'1 0'1 V21r 20'2 20'1 

0'2 J (X - !1-d2 1 J -(w;I'~)2 (x - !1-2)2 
= log - - 2 N 1 (X, J1,1, O'd dx + . f<>= e "1 2 2 dx 

0'1 20'1 0'1y21l' 0'2 

1 
0'2 E[(X-J1,1)2]+ 1 J -(W;:d)2(X-!1-2)2 d = og - - 2 -- e 1 2 X 

. 0'1 20' 1 0'1 V21r 20'2 

0'2 E [(X - !1-d] 1 J -(w-I'~ )2 (X - !1-2)2 
= log - - 2 + --- e 2"1 2 dx 

0'1 20'1 0'1 V21r 20'2 

1 
0'2 O'r 1 J -(w;:d)2 (x - !1-2)2

d = og---2 +--- e 1 2 X 
0'1 20'1 0'1 v'27f 20'2 

In order to break down our last indefinite integral, a redundant !1-1 is introduced into the second term 

such that 

(X - !1-2)2 = (x - !1-1 + !1-1 - !1-2)2 

= [(x - !1-1) + (!1-1 - !1-2)]2 

= (x - !1-d + 2 (x - !1-1) (!1-1 - J1,2) + (!1-1 - !1-2)2 

so 

Substituting this result back into our derivation of the K L distance gives 
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(A.2) 

From this point on the derivation follows that in Johnson [47]. 

A.2. Linguistic Essentials 

Certain linguistic concepts are required for discussion of this work. The following subsections coyer 

sorne basic topics of computationallinguistics within the specific context of multimodallanguage. 

A.2.t. Lexography and Morphology. Words can be broadly classified into parts-of-speech (POS) 

or lexographies, and differ from one another via numerous morphologies on common roots. For example, 

adding the trailing -s to the word noun is a morphology from the singular noun class to the plural noun 

class. Table A.1 provides a subset of the part-of-speech tags in the Penn Treebank [104], one of many such 

classification schemes. Eric Brill's transformational tagger is a popular tool to automatically associate POS. 

tags with words in a corpus [52], with an expected accuracy (proportion of potentiaUy polysemous words 

uniquely tagged with the correct POS) of 95%. This, however, would lead to an average of 1 error per 20-

word sentence, having potentiaUy negative consequences in parsing, in general. These complications, among 

others, are the reason why CLAVIUS does not perform this step explicitly. Note that Table A.I also includes 

POS tags for POINT and AREA 'words'. In general, CLAvIUstreats lexical entries from aU modalities the 

same, so deictic gestures are treated with the sarne rnechanisrns as written or spoken words. 

tag type example tag type example 

cc coordinating conjunction this and that PP$ possessive pronoun my lodge 

CD cardinal number 18 RB adverb the threads work concurrently 

DT determiner the confectionery RBR adverb, comparative 1 have more credibility 

IN preposition or subordinating conjunction in the vestibule RBS adverb, superlative the most chicken feed 

JJ adjective the happy camper UH interjection or dysfluency fool me once, shame on uh .. , you 

JJR adjective, comparative the happier camper VB verb, base form waiting for it 10 happen 

JJS adjective, superlative the happiest camper VBD verb, past tense ithappened 

NN noun, singular or mass thatmonkey VBG verb, gerund or present participle it is happening 

NNS noun, plural these boxes POINT point deixis '.,.(x,y) 

pp personal pronoun 1 am Torgo AREA areadeixis ~(x,y,height,width)/ 

Table A.I: Selection of cornrnon parts of speech and their tags, from a subset of the Penn Treebank, plus 
additional tags POINT and AREA for deictic gestures. 
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A.2.2. Phrase Structure. Context.free grammar rules are expressions of the type A t- B where B 

is any sequence of terminais or non-terminais - usually ordered. For example, the rule ri: NP t- DT J J N N 

claims that a noun phrase (NP) can be composed of a determiner, adjective, and singular noun in that order. 

The noun phrase is a non-terminal of the English grammar, and can be composed in a number of different 

ways. 

A partial parse is a specifie application of particular grammar rules to part or aIl of input terminaIs. 

For example, if a system is given text "read the fine manuaf', then the application of the rule ri (above) 

to the subset "the fine manuaf' constitutes a partial parse of the sentence. This is typically expressed using 

bracketed terminology prefixed with non terminaIs, as in 

Sorne semantic information can be inferred from such syntactic structure, but sorne info cannot so 

easily be extracted. For instance, the phrase "delete '" this box" cannot in practice be understood with 100% 

certainty, if the deixis '" faIls between two objects. Information from the world is often required to complete 

interpretation. 

A.2.3. Ambiguity and Uncertainty. Ambiguity and uncertainty can exist at aIl Ieveis of the recog­

nition process. Errors in tracking, or noise on the transmission line can distort the signal from tracked input 

such as speech or video. Segmentation between word boundaries is also often stochastic, and multiple POS 

tags can exist for a particular word ("book" can be a NN or a YB, for instance). 

Structural ambiguity occurs when a single sequence of words can be covered by more than one pos­

sible combination of grammar rules, as exemplified in Figure A.l. Ambiguities related to attachment and 

coordination are frequent, and choosing between multiple possible syntactic interpretations is the subject of 

ongoing research. 

A.2.4. Language Models. StatisticaIIanguage modeis are often used in ASR to estimate word strings 

from acoustic data by means of maximum IikeIihood a posteriori decision rules to determine the optimal word 

sequence Wc for a given speech signal X: 

(A.3) Wc = argmaxP(WIX) = argmax P(W)P(XIW) 
w w P(X) 

where P(XIW) is the optimal acoustic model and P(W) is the optimal language model [61]. Since 

W is an ordered sequence of words Wi (W = {Wl W2 ... wn }), the word sequence probability, from the 

multiplication rule, is: 
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S 

~ 
NP VP 

I~ 
PP V NP V NP PreP 

II~ 1 ~ ~ 
1 shot NP PreP 1 shot DT NN IN NP 

~ ~ 1 1 I~ 
DT NN IN NP an elephant in PP$ NNS 

1 1 1 ~ 1 1 

an elephant in PP$ NNS my pyjamas 

1 1 

my pyjamas 

Figure A.l: Two interpretations of the phrase "[ shot an elephant in my pyjamas", from Groucho Marx. The 
left parse suggests that the shot elephant was in the interlocutor's pyjamas, whereas the right parse indicates 
that the shooter was wearing their pyjamas at the time of the shooting. 

P(W) = P(Wl W2 ... wn) 
(A.4) 

= P(Wl)P(W2IwdP(W3Iwl W2)··· P(WnIWl W2··· Wn-l) 

where P(wilwl ... wi-d is the probability that word Wi follows the ordered words Wl ... Wi-l. How­

ever, for sentences of any reasonable length, the dimensionality of this probability space becomes unwieldy, 

even for moderate-sized vocabularies - so a typical solution is to approximate conditional probabilities with 

only a single conditioning variable as in P( W X Iwy ), giving 

(A.5) 

where < s > is the start symbol indicating that P( wli < s » is the probability that Wl begins a sen­

tence. Employing conditional probabilities in this way is called the bigram model, and naturally incorporates 

ordering in language. Language models are sometimes preferred to parsing models in deciding between com­

peting parses in terms of their 'naturalness' [67], although the absense of explicit structural representation 

keeps them from being a drop-in replacement for peFGs. 

A.2.5. Measures of Accuracy. Accuracy in general NLP is not limited to simple ratios of correct vs. 

incorrect interpretations. For instance, 

R 11 _ # of correct hypotheses given by a system 
eca - total # of possible interpretations in a text 
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indicates how much of a text a given interpreter can 'cover', if it is allowed to not provide interpretations 

of sentences. Precision is more closely related to the standard definition of accuracy, and in the context of 

this thesis is synonymous with it: 

P 
.. # of correct hypotheses given by a system 

reclslon = -----::-:-:----:-:---'~-:----=:'--__:_-=--=--­
total # of hypotheses given by a system 

Errors in system hypotheses are often individually scrutinized subjectively, or classified into insertion, 

deletion or replacement types if they differ from a desired interpretation by the adding of extra words, 

removal of expected words, or misinterpretation of words, respectively. 

Relative Error Reduction (RER) is used to compare improvements gained in precision non-commutatively 

by moving from system A to system B, where systems A and B may simply be reparameterizations of each 

other. Specifically, 

RER(A, B) = error rate in A - e~or rate in B 
error rate lU A 
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Example Grammar 

The following XML grammar exemplifies a subset of the one used in the experiments described in Chapter 

5. 

Grammar rules are elements one level below the <CLAY _GRAMMAR> tag. The name of one of these 

elements is the name of LHS constituent, and element names below the <RHS> tag are the RHS constituents 

of the rule. Otherwise, in general element names are used as feature names <I> in the graphs implementing the 

respective rules. 

Reentrant nodes are specified by the '$' symbol. For example, in clav_UTT +-- colour_command below, 

the content of utterance is linked to the content of the colour command by the '$1' variable (characters 

following the '$' define variable names for graph nodes). The ,1" symbol is used to indicate retum values from 

constraint functions, and also refer to reentrant nodes. 

<CLAV_grammar> 

<!-- -
<!--

- --> 
--> 

<!-- - - - - - --> 
<!-- this defines the rule: clav_UTT <-- clav_UTT 'and' clav_UTT --> 
<clav_UTT> 

<p_gamma>O.l</p_gamma> 
<time > </time> 
<score> </score> 
<content> A3 </content> 
<rhs> 

<clav_UTT> $l<content> </content> </clav_UTT> 
<and></and> 
<clav_UTT> $2<content> </content> </clav_UTT> 

</rhs> 
<params> </params> 
<constraints> 

<! [CDATA[ add_Commands( $1, $2, A3) ll> 
</constraints> 

</clav_UTT> 

<clav_UTT> 
<p_gamma>O.2</p_gamma> 
<time > </time> 
<score> </score> 
<content> $1 </content> 
<rhs> 



<colour_command> $l<content> </content> 
$cons <constraints></constraints> 

</colour_command> 
</rhs> 
<params> </params> 
<constraints> </constraints> 

</clav_UTT> 

<clav_UTT> 
<p_gamma>O.2</p_gamma> 
<time > </time> 
<score> </score> 
<content> $1 </content> 
<rhs> 

<delete_command> $l<content> </content> 
Scons <constraints></constraints> 

</delete_command> 
</rhs> 
<params> </params> 
<constraints></constraints> 

</clav_UTT> 

<cl av_VTT> 
<p_gamma>O.2</p_gamma> 
<time > </time> 
<score> </score> 
<content> $1 </content> 
<rhs> 

<create_command> $l<content> </content> 
Scons <constraints></constraints> 

</create_command> 
</rhs> 
<params> </params> 
<constraints></constraints> 

</clav_UTT> 

<clav_UTT> 
<p_gamma>O.2</p_gamma> 
<time > </time> 
<score> </score> 
<content> $1 </content> 
<rhs> 

<transform_command> $l<content> </content> 
Scons <constraints></constraints> 

</transform_command> 
</rhs> 
<params> </params> 
<constraints></constraints> 

</clav_UTT> 

<clav_UTT> 
<p_gamma>O.2</p_gamma> 
<time > </time> 
<score> </score> 
<content> $1 </content> 
<rhs> 

<move_command> $l<content> </content> 
Scons <constraints></constraints> 

</move_command> 
</rhs> 
<params> </params> 
<constraints></constraints> 

</clav_UTT> 

<!--
<!-­
<!--
<!-- colours (an) object(s) the specified col our examples: --> 
<!-- "colour this (click) red" --> 
<!-- "blue (click)" --> 
<colour_command> 

<p_gamma>O.5</p_gamma> 
<time > </time> 
<score> </score> 
<content> 

<action> col our <faction> 

APPENDIX B. EXAMPLE GRAM MAR 

- - - - - - - --> 

--> 
- --> 
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<colour> $c </colour> 
<objects> $01 </objects> 

</content> 
<rhs> 

<colour> 
<content> $c <colour> </colour> </content> 

</colour> 
<object_reference> 

<content> $01 <objects> </objects> </content> 
</object_reference> 

</rhs> 
<params> </params> 
<constraints></constraints> 

</colour_cornmand> 

<colour_command> 
<p_gamma>O.5</p_gamma> 
<time > </time> 
<scorê> </score> 
<content> 

<action> colour </action> 
<colour> $c </colour> 
<objects> $01 <Iobjects> 

</content> 
<rhs> 

<VB> 
$t_vb <time> </time> 

<ward> colour </word> 
</VB> 
<object_reference> 

$t_objref <time> </time> 
<content> $01 <objects> </objects> </content> 

</object_reference> 
<colour> 

St_col <time> </time> 
<content> $c <colour> </colour> </content> 

</colour> 
</rhs> 
<params> 

$td <td> 5 </td> 
</params> 
<constraints> 
<! [CDATA [ 

t_fol10ws($t_col,$t_vb,$td) * t_follows($t_objref,$t_vb,$td) ll> 
</constraints> 

</colour_command> 

< !--- -
<!--
<!-- - - - - - -
<!~~ deletes (an) object(s) examples; ~~> 

<! -- "delete these (click) (click) (click) If --> 
<!-- "remove aIl blue cubes" --> 
<delete_command> 

<p_gamma>1.0</p_gamma> 
<time > </time> 
<score> </score> 
<content> 

<action> delete <faction> 
<objects> $01 </objects> 

</content> 
<rhs> 

<delete> 
$t_vb <time> </time> 

</delete> 
<object_reference> 

$t_objref <time></time> 

DELETE_COMMAND 

<content> $01 <objects> </objects> </content> 
</object_reference> 

</rhs> 
<pararns> </pararns> 
<constraints> 

<![CDATA[ 
depends_on ($t_objref, $t_vb) ll> 

</constraints> 
</de1ete_command> 

- - --> 
~~> 

- - - - --> 
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- --> 
--> 

<!-­
<!-­
<!-- - - - - --> 

<!-- creates (an) object(s) in the specified location examples: --> 
<create_command> 

<p_gamma>O.O</p_gamma> 
<time > </time> 
<score> </acore> 
<content> 

<action> 
<number> 
<col our> 
<shape> 
<x> 
<y> 
<height> 
<width> 

</content> 
<rhs> 

create <faction> 
$n </number> 
$c </colour> 
$s </shape> 
$x <Ix> 
$y </y> 
$h </height> 
$w </width> 

<create> </create> 
<CD> 

$t_num <time> </time> 
$n <number> </number> 

</CD> 
<colour> 

St_col <time> </time> 
<content> $c <colour> </colour> </content> 

</colour> 
<obj_type> 

St_shape <time> </time> 
<content> $8 <shape> </shape> <num> p </num> </content> 

</obLtype> 
<location> 

<content> 
$x <x> <Ix> 
$y <y> </y> 
$h <height> </height> 
$w <width> </width> 

</content> 
</location> 

</rhs> 
<params> 

$td <td> 5 </td> 
</params> 
<constraints> 
<! [CDATA[ 

t_follows($t_shape,$t_col,$td) * t_follows($t_shape, $t_num, $td) * t_follows($t_col, $t_num, $td) 11> 
</constraints> 

</create_command> 

<create_command> 
<p_gamma>O.5</p_gamma> 
<time > </time> 
<score> </score> 
<content> 

<action> 
<number> 
<col our> 
<shape> 
<x> 
<y> 
<height> 
<width> 

</content> 
<rhs> 

create <laotien> 
1 </number> 
$c </colour> 
$s </shape> 
$x <Ix> 
$y </y> 
$h </height> 
$w </width> 

<create> $t_create <time> </time> </create> 
<a> $t_a <time> </time> <la> 
<colour> 

St_col <time> </time> 
<content> $c <colour> </colour> <fcontent> 

</colour> 
<obj_type> 

St_shape <time> </time> 
<content> $s <shape> </shape> <num> s </num></content> 

</obLtype> 
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<location> 
<content> 

$x <x> <Ix> 
$y <y> </y> 
$h <height> </height> 
$w <width> </width> 

</content> 
</location> 

</rhs> 
<params> 

$td <td> 5 </td> 
</params> 
<con:straints> 
<! [CDI\TI\[ 

APPENDIX B. EXAMPLE GRAMMAR 

t_follows($t_shape,$t_col,$td) * t_follows($t_shape, $t_a, $td) * t_follows($t_shape,$t_create,$td) 
.t_follows($t_col, St_a, $td) * t_follows($t_col,$t_create,$td) * t_follows($t_a,$t_create,$td) 11> 

</constraints> 
</create_command> 

<!-- -
<!--
<!-- -
<transform_command> 

<p_gamma>O.5</p_gamma> 
<time > </time> 
<score> </score> 
<content> 

<action> transform </action> 
<objects> $01 </objects> 
<colour> $colour </colour> 
<shape> $s </shape> 

</content> 
<rhs> 

<colour> $t_jj <time> </time> 

TRANSFORM_COMMAND 

<content> $colour <col our> </colour> 
</content> 

</colour> 
<obj_type> 

$t_objtype <time> </time> 
<content> $s <shape> </shape> <num> s </num></content> 

</obLtype> 
<object_reference> 

<tirne> </time> 
<content> $01 <abjects> </objects> </content> 

</object_reference> 
</rhs> 
<params> $td <td> 5 </td> </params> 

- - - --> 
--> 

- - - - - - - - --> 

<constraints> <! [CDI\TA[ t_follows($t_objtype,$t_jj,$td).depends_on($t_jj, $t_objtype) 11></constraints> 
</transform_command> 

<!-- turn OBJECT into COLOUR OBJECT_TYPE --> 
<transform_command> 

<p_gamma>O.5</p_gamma> 
<time > </time> 
<score> </score> 
<content> 

<objects> $01 </objects> 
<colour> $colour </colour> 
<shape> $s </shape> 

</content> 
<rhs> 

<transform> $t_transform<time></time> </transform> 
<object_reference> 

$t_objref <time> </time> 
<content> $01 <objects> </objects> </content> 

</object_refe~ence> 

<IN> $t_in <time></time> <word> into </word> </IN> 
<!-- the colour of an abject --> 

<colour> $t_jj <time> </time> 

</colour> 
<obj_type> 

<content> $colour <colour> </colour> 
</content> 

$t_objtype <time> </time> 
<content> $s <shape> </shape> <num> s </num></content> 

</abj_type> 
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</rhs> 
<params> 

$td <td> 5 </td> 
</params> 
<constraints> 
<! [CDATA [ 

APPENDIX B. EXAMPLE GRAMMAR 

t_follows($t_objtype,$t_jj,$td) * t_follows($t_jj, St_in, $td) * t_follows($t_in,$t_objref,$td) 
*t_follows($t_objref, $t_transform, $td) *depends_on($t_jj, $t_objtype) ll> 

</constraints> 
</transform_command> 

<!-- -
<!-­
<!--

- - - - - - - - - - - - - - - --> 

<move_cornmand> 
<p_gamma>O.5</p_gamma> 
<tirne > </time> 
<score> </score> 
<content> 

<action> move <faction> 
<objects> $01 </objects> 
<l<> $l< <Il<> 
<y> $y</y> 
<height> $h</height> 
<width> $w </width> 

</content> 
<rhs> 

<maye> $tmov <time></time> </move> 
<object_reference> 

$tref <time> </time> 
<content> $01 <objects> </objects> </content> 

</object_reference> 
<location> 

$tloc <time> </time> 
<content> $x <x> <Ix> 

$y <y> </y> 

</content> 
</location> 

</rhs> 

$h <height> </height> 
$w <width> </width> 

<params> $dl<y <dl<y> 100 </dl<Y> 
$td <td> 5 </td> 

</params> 
<constraints> 

<! [CDATA[ t_follows($tloc,$tref,$td) * t_follows($tref, $tmov, $td) ll> 
</constraints> 
</move_command> 

<!-- -
<!-- OBJECT_REFERENCE 
<! -- - - - - - - - - - - - - - - - - -
<!-- this non terminal refers te one or more objects in the scene examples: --> 
<!-- {thatlthis) (click) {{redlblue ... } cube 1 ••• } a single object, at the specified location --> 
<!-- these (area) aIl objects within the specified area --> 
<!-- these (click)+ each object clicked --> 
<!-- these cubes (area) aIl cubes within the specified area --> 
<!-- these cubes (click)+ each cube clicked --> 
<!-- all {greenlblue ... } objectslcubesl... all objects with the specified attributes--> 

--> 
- --> 

- --> 
--> 

- --> 

<!-- aIl cubes to the 1eft of this sphere (click) aIl cubes whose x coordinate is less than the indicated sphere --> 
<!-- aIl red spheres (fromlin) this area (area) aIl red spheres within the specified area --> 

<!-- single object --> 
<object_reference> 

<p_gamma>0.25</p_gamma> 
<time > </time> 
<score> </score> 
<content> 

$01 <objects> ~ol</objects> 
</content> 
<rhs> 

<!-- a single determiner --> 
<DT> 

St_dt <time> </time> 
<num> s </num> 

</DT> 
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<!-- a click --> 
<DEIXIS> 

$tclick <time > </time> 
<score> </score> 

$x <x> <Ix> 
$y <y> </y> 

<le ft> down </left> 
<middle> </middle> 
<right> </right> 

</DEIXIS> 
<!-- the colour of an abject --> 

<colour> $t_jj <time> </tirne> 

<Icolour> 

<content> $colour <colour> </colour> 
</content> 

<!-- the type of object --> 
<obLtype> 

$t_nn <time> </time> 
<content> $obj_tYPQ <shape> </shape> <num> s </num></content> 

</obLtype> 
</rhs> 
<params> 

$dxy <dxy> 100 </dxy> 
$td <td> 5 </td> 

</params> 
<constraints> 

<! [CDATA[ 
objectsAt ( $x, $y, $dxy, $dxy, ~01 ) * objectsType($ol, $obj_type ) *objectsColour( $01, $colour ) * t foll 

</constraints> 
</object_reference> 

<object_reference~ 

<p_gamma>0.25</p_gamma> 
<time > </time> 
<score > </score> 
<content> 

$01 <objects> 'ol<lobjects> 
</content> 
<rhs> 

<!-- a single determiner --> 
<DT> 

st_dt <time> </time> 
<num> 5 </num> 

</DT> 
<!-- a click --> 

<DEIXIS> 
$tclick <time > </tirne> 
<score> </acore> 

$x <x> <Ix> 
$y <y> </y> 

</DEIXIS> 
</rhs> 
<params> 

<le ft> down </left> 
<middle> </middle> 
<right> </right> 

$dxy <dxy> 100 </dxy> 
$td <td> 5 </td> 

</params> 
<constraints> 

<! [CDATA[ 
objectsAt ( $x, $y, $dxy, $dxy, '01) Il> 

</constraints> 
</object_reference> 

<object_reference> 
<p_gamma>0.25</p_gamma> 

<time > </time> 
<score> <fscore> 
<content> 

$01 <objects> 'ol<lobjects> 
</content> 
<rhs> 

<DEIXIS> 
$tclick <time > </time> 
<score> <fscore> 
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$x <x> <Ix> 
$y <y> </y> 

<left> down </1eft> 
<midd1e> </midd1e> 
<right> </right> 

</DEIXIS> 
</rhs> 
<params> 

$dxy <dxy> 100 </dxy> 
$td <td> 5 </td> 

</params> 
<constraints> 

<! [CDATA[ 
objectsAt ( $x, $y, $dxy, $dxy, "01) Il> 

</constraints> 
</object_reference> 

<!-~ many objects - selection --> 

<!-- area --> 
<object_reference> 

<p_gamma>0.25</p_gamma> 
<time > </time> 
<score> </score> 
<content> 

$01 <objects> "ol</objects> 
<Icontent> 
<rhs> 

<!-- a plural determiner --> 
<DT> 

St_dt <time> </time> 
<num> p </num> 

</DT> 
<!-- an area --> 

<AREA> 
$t_area <time > </time> 
<score > </score> 

$x <x> <Ix> 
$y <y> </y> 

$width <width> </width> 
$height <height> </height> 

</AREA> 
<!-- the co1our of an object --> 

<co1our> $t_jj <time> </time> 

</co1our> 

<content> $colour <col our> </colour> 
</content> 

<!-- the type of object --> 
<obj_type> $t_nn <time> </time> 

<content> $obj_type <shape> </shape> <num> p </num></content> 
</obLtype> 

</rhs> 
<params> 

$dxy <dxy> 100 </dxy> 
$td <td> 5 </td> 

</params> 
<constraints> 

<! [CDATA[ 
objectsln ( $x, $y, $width, $height, ~ol ) * objectsType($ol, $obj_type ) *objectsColour( $01, $colour ) * 

</constraints> 
</object_reference> 

<!-- rnulticlicks --> 
<object_reference> 

<p_gamma>0.25</p_gamma> 
<time > </time> 
<score> </score> 
<content> 

<objects> $ol</objects> 
</content> 
<rhs> 

<!-- a plural deterrniner --> 
<DT> 

St_dt <time> </time> 
<nurn> p </num> 

</DT> 
<!-- multiple clicks --> 
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<multi_clicks> 
St_clicks <time > </time> 

$01 <objects> </objects> 
</multi_clicks> 
<!-- the colour of an abject --> 

<colour> $t_jj <time> </time> 

</colour> 

<content> $colour <co!our> </colour> 
</content> 

<!-- the type of abject --> 
<obj_type> St_nn <time> </time> 

<content> $obj_type <shape> </shape> <num> p </num></content> 
</obLtype> 

</rhs> 
<param5> 

$dxy <dxy> 100 </dxy> 
$td <td> 5 </td> 

</params> 
<constraints> 

<! [CDATA[ 
objectsType($ol, $obj_type ) *objectsColour( $01, $colour ) * t_follows($t_jj,$t_dt,$td) * t_follows($t_nn, 

</constraints> 
</object_reference> 

<!-- Many objects - referential --> 
<object_reference> 

<p_gamma>0.25</p_gamma> 
<time > </time> 
<score> </acore> 
<content> 

<objects> ~ol</objects> 
</content> 
<rhs> 

<!-- a plural determiner --> 
<DT> 

St_dt <time> </time> 
<word> aIl </word> 

<lOT> 
<!-- the colour of an abject --> 

<colour> $t_jj <tirne> </time> 

</colour> 

<content> $colour <colour> </colour> 
</content> 

<!-- the type of object --> 
<obj_type> St_nn <time> </time> 

<content> $obj_type <shape> </shape> <num> p </num></content> 
</obLtype> 

</rhs> 
<params> 

$dxy <dxy> 100 </dxy> 
$td <td> 5 </td> 

</params> 
<constraints> 

<! [COATA[ 
objectsMatching( $colour, $obj_type, '01 ) * t_follows($t_jj,$t_dt,$td) * t_follows($t_nn, $t_jj, $td) *depE 

</constraints> 
</object_reference> 

<!-­
<!--
<!-- - - - - - -
<!-- pp phrases and things like "here" ex: --> 

<! -- (there 1 here) (click) --> 
<!-- to the right of this box --> 
<!-- in this area (area) --> 
<location> 

<p_gamma>0.5</p_gamma> 
<content> 

<x> $x <Ix> 
<y> $y <Iv> 
<height> 0 </height> 
<width> 0 </width> 

</content> 
<rhs> 

<OEIXIS> 
$x <x> <Ix> 

--> 
LOCATION --> 

- - - - - --> 
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$y <y> </y> 

</DEIXIS> 
</rhs> 

<le ft> down </left> 
<middle> </middle> 
<right> </right> 

<params> </pararns> 
<constraints></constraints> 

</location> 

<location> 
<p_gamma>0.5</p_gamma> 
<content> 

<x> $x <Ix> 
<y> $y </y> 
<height> $height </height> 
<width> $width </width> 

</content> 
<rhs> 

<AREA> 
$t_area <time > </time> 
<score> </score> 

$x <x> <Ix> 
$y <y> </y> 

$width <width> </width> 
$height <height> </height> 

</AREA> 
</rhs> 
<params> </params> 
<constraints></constraints> 

</location> 

<!-- -
<!--
<! -- - - - - -
<multi_clicks> 

<p_gamma>1.0</p_gamma> 
St_clicks <time > </time> 

<objects> -01 </objects> 
<rhs> 

<DEIXIS> 
$x 
$y 

<x> <Ix> 
<y> </y> 
<le ft> down </left> 
<middle> </middle> 
<right> </right> 

</DEIXIS> 
<multi_clicks> 

</rhs> 

$02 <objects> </objects> 
</multi_clicks> 

<params> 
$dxy <dxy> 100 </dxy> 
$td <td> 5 </td> 

</params> 
<constraints> 

MULTI CLICKS 

<! [CDATA[ 
</constraints> 

</multi_clicks> 

objectsAt ( $x, $y, $dxy, $dxy, -03 )*concat( $02, -03,-01 )]]> 

<!-­
<!-­
<!--
<!-- AND --> 

SEMANTIC WORD GROUPS 

<and> <p_gamma>1.0</p_gamma> <rhs><CC> <word> and </word></CC></rhs></and> 

<!-- CREATE (synonyms) --> 
<create> <p_gamma>O.25</p_gamma> <rhs><VB> <word> create </word> </VB></rhs></create> 
<create> <p_gamma>O.25</p_gamma> <rhs><VB> <ward> make </word> </VB></rhs></create> 
<create> <p_gamma>O.25</p_gamma> <rhs><VB> <ward> draw </word> </VB></rhs></create> 
<create> <p_gamma>O.25</p_gamma> <rhs><VB> <ward> put "</word> </VB></rhs></create> 

<!-- TRANSFORM (synonyms) --> 
<transform> <p_gamma>O.4</p_gamma> <rhs><VB> <word> transform </word> </VB></rhs></transform> 
<transform> <p_gamma>O.3</p_gamma> <rhs><VB> <word> turn </word> </VB></rhs></transform> 
<transform> <p_gamma>O.3</p_gamma> <rhs><VB> <word> make </word> </VB></rhs></transform> 
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<!-- MOVE (synonyms) --> 
<move> <p_gamma>O.5</p_gamma> <rhs><VB> <ward> move </word> </VB></rhs></move> 

<rhs><VB> <ward> put </word> </VB></rhs></move> <move> <p_gamma>O.5</p_gamma> 

<!-- DELETE (synonyms) --> 
<delete> <p_gamma>O.4</p_gamma> <rhs><VB> <word> delete </word> </VB></rhs></delete> 
<delete> <p_gamma>O.3</p_gamma> <rhs><VB> <word> remove </word> </VB></rhs></delete> 
<delete> <p_gamma>O.3</p_gamma> <rhs><VB> <word> erase </word> </VB></rhs></delete> 

<!-- a (article) --> 
<a> <p_gamma>O.5</p_gamma><rhs><DT> <ward> a </word></DT></rhs></a> 
<a> <p_gamma>O.5</p_gamma><rhs><DT> <word> an</word></DT></rhs></a> 

<!-- here_there --> 

<here_there> <p_gamma>O.5</p_gamma><rhs><RB> <word> here </word></RB></rhs></here_there> 
<here_there> <p_gamma>O.5</p_gamma><rhs><RB> <word> there </word></RB></rhs></here_there> 

<!-- COLOURS --> 
<colour> <p_gamma>O.2</p_gamma> 

<content><colour>red</colour></content><rhs> <JJ> <word>red</word></JJ> </rhs> 
</colour> 
<colour> <p_gamma>O.l</p_gamma> 

<content><colour>orange</colour></content><rhs> <JJ> <word>orange</word></JJ> </rhs> 
</colour> 
<colour> <p_gamma>O.l</p_gamma> 

<content><colour>yellow</colour></content><rhs> <JJ> <word>yellow</word></JJ> </rhs> 
</colour> 
<colour> <p_gamma>O.2</p_gamma> 

<content><colour>green</colour></content><rhs> <JJ> <word>green</word></JJ> </rhs> 
</colour> 
<colour> <p_gamma>O.2</p_gamma> 

<content><colour>blue</colour></content><rhs> <JJ> <word>blue</word></JJ> </rhs> 
</colour> 
<colour> <p_gamma>O.l</p_gamma> 

<content><colour>violet</colour></content><rhs> <JJ> <word>violet</word></JJ> </rhs> 
</colour> 
<colour> <p_gamma>O.l</p_gamma> 

<content><colour>violet</colour></content><rhs> <JJ> <word>purple</word></JJ> </rhs> 
</colour> 

<!-- SHAPES --> 
<obj_type> <time> </time> 

<content> <shape> 
<rhs> <NN> <word> 

</obj_type> 
<obj_type> <time> </time> 

<content> <shape> 
<rhs> <NN> <word> 

</obj_type> 
<obj_type> <time> </time> 

<content> <shape> 
<rhs> <NN> <word> 

</obj_type> 
<obj_type> <time> </time> 

<content> <shape> 
<rhs> <NN> <word> 

</obj_type> 
<obj_type> <time> </time> 

<content> <shape> 
<rhs> <NN> <word> 

</obLtype> 

<p_gamma>O.l</p_gamma> 
cube </shape> <num> s </num> </content> 
cube</word></NN> </rhs> 

<p_gamma>O.l</p_gamma> 
cube </shape> <num> s </num> </content> 
box</word></NN> </rhs> 

<p_gamma>O.l</p_gamma> 
sphere </shape> <num> s </num> </content> 
sphere</word></NN> </rhs> 

<p_gamma>O.l</p_gamma> 
sphere </shape> <num> s </num> </content> 
ball</word></NN> </rhs> 

<p_gamma>O.l</p_gamma> 
pyramid </shape> <num> s </num> </content> 
pyramid</word></NN> </rhs> 

<obj_type> <time> </time> <p_gamma>O.l</p_gamma> 

</obj_type> 

<content> <shape> cube </shape> <num> p </num> </content> 
<rhs> <NNS> <word> cubes</word></NNS> </rhs> 

<obj_type> <time> </time> <p_gamma>O.l</p_gamma> 

</obj_type> 

<content> <shape> cube </shape> <num> p </num> </content> 
<rhs> <NNS> <word> boxes</word></NNS> </rhs> 

<obj_type> <time> </time> <p_gamma>O.l</p_gamma> 

</obj_type> 

<content> <shape> sphere </shape> <num> p </num> </content> 
<rhs> <NNS> <word> spheres</word></NNS> </rhs> 

<obj_type> <time> </time> <p_gamma>O.l</p_gamma> 
<content> <shape> sphere </shape> <num> p </num> </content> 
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<rhs> <NNS> <word> balls</word></NNS> </rhs> 
</obLtype> 
<obj_type> <time> </time> <p_gamma>O.l</p_gamma> 

</obj_type> 

<content> <shape> pyramid </shape> <num> p </num> </content> 
<rhs> <NNS> <word> pyramids</word></NNS> </rhs> 

</CLAV_grammar> 

APPBNDlX B. EXAMPLE GRAMMAR 
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