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Abstract—We present three studies involving WhatsHap, a
mobile system designed to deliver speech as vibrations on the
forearm with minimal hardware demands and practice time.
After only 4.2 h of training on a 24-haptic phoneme vocabulary
and on how to combine these to form words, participants were
able to generalize their phoneme identification skills to the
understanding of untrained English words, correctly identifying
65% of words in phrases rendered with a user-controlled interval
between words, and up to 59% with a fixed interval. Ultimately,
participants were able to complete 88% of simple communica-
tive tasks that elicited spontaneous speech and semi-structured
bidirectional conversation using the apparatus. We conclude by
providing insights as to how such a system may ultimately be
used for communication under more natural conditions.

Index Terms—phonemic coding, tactile speech communication,
language acquisition, speech-to-haptic

I. INTRODUCTION

THE tactile sense offers a useful channel for communica-
tion, especially in contexts where the visual or auditory

modalities are occupied with other tasks, e.g., while driving
or performing surgery, or otherwise compromised, e.g., for
individuals with visual or auditory difficulties. Haptic commu-
nication frequently employs a small vocabulary of haptic icons
(or “tactons” [1]), tailored to application-specific problem
domains such as navigation guidance [2], mobile phone alerts
[3], or numeric information delivery [4].

Another class of haptic communication is concerned with
transmission of a spoken language, first popularized by the
Tadoma method, in which deaf-blind users receive speech by
placing their hand on the talker’s face. With Tadoma, trained
individuals were able to achieve a recognition accuracy of 80%
for keywords in conversational sentences [5].

Initial attempts to create tactile speech aids, beginning in
the 1970s, used vocoders, which converted speech directly to
vibrotactile stimulation based on acoustic properties of the
input speech signal [6]. This technique is able to transmit
speech haptically at the same rate as the spoken input. How-
ever, the complexity of the vibration patterns associated with
arbitrary input signals, including variations in pitch and speech
rate, imposes extensive training requirements. For instance,
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hearing participants required 55 hours of training to achieve
80% accuracy on a 150-word set [7], and deaf children trained
for 48 weeks (230 hours) to reach 84% accuracy on a set with
152 words [8]. Furthermore, such vocoder-based approaches
do not generalize well to the recognition of untrained words.

Modern research on haptic speech communication has fo-
cused on delivering speech in terms of small discrete units
such as letters or phonemes. This is in part motivated by
the proliferation of text-based messaging and recent advance-
ments in speech-to-text technology. Examples of letter-to-
haptic mapping include the use of simplistic unistroke patterns
resembling manual writing, rendered through four actuators
worn on the wrist [9], and abstract overlapping spatio-temporal
stimulations rendered through actuators worn on the hand
[10], [11]. Phoneme-based mapping offers the advantage of
rendering words using shorter stimuli, given that any English
word is composed by a number of phonemes smaller than
the number of letters. The trade-off is a larger number of
basic discrete units needed to be encoded by the system, since
there are 44 English phonemes and 26 letters in the alphabet.
This may impose non-trivial hardware requirements, such as
in Reed et al. [12], in which 24 actuators were used to deliver
a set of 39 English phonemes encoded as vibrations. These
actuators are mounted on a cumbersome gauntlet that must
be carefully positioned and calibrated on the forearm, which
restricts mobility. In addition, the hardware needed to drive the
24 actuators cannot be easily miniaturized and imposes high
energy requirements, further hampering the system’s mobility.
A simpler apparatus capable of encoding 23 English phonemes
using a multi-sensory (radial squeeze, lateral skin stretch,
vibration) set of stimuli was introduced by Dunkelberger et
al. [13]. After 100 minutes of training on a set of 150 words,
participants were able to correctly identify 87% of words from
a 12-item list, with a self-paced rate of phoneme rendering.

The aforementioned work demonstrated the feasibility of
delivering speech through the sense of touch, relying on a
discrete mapping. However, we are not aware of any in-
stances in which such an encoding has been employed under
more realistic scenarios, such as receiving untrained phrases
constructed with an extensive and complex vocabulary, or in
bidirectional communication, where two interlocutors are able
to carry out an unstructured “haptic conversation”.

This article reports on three studies involving “WhatsHap”,
a mobile system designed to deliver text or speech as vi-
brations on the forearm with minimal hardware demands
and training time. Naive participants engaged in self-training
activities for a total of 4.2 hours, spread over a 14-month
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Fig. 1: WhatsHap is a messaging app that facilitates haptic conversation between two or more interlocutors. A user may speak
or input text into the app, and the constituent phonemes of their message are sent as a sequence of patterned vibrations to
another user’s arm. Users may reply in turn, enabling real time haptic conversation.

period, to learn a subset (24) of English phonemes rendered
haptically, advancing to words, phrases, and ultimately, simple
communicative tasks where the conversation partner’s speech
was delivered solely by vibrotactile actuation. A summary of
these studies and their respective goals is provided below. For
details on the number of phonemes, words, and phrases used
in the studies, please refer to Table I.

Study 1: fourteen participants were introduced to the ap-
paratus and performed 100 minutes of self-training spread
across four consecutive days. Activities were designed to teach
phonemes progressively, allowing participants to focus on
learning a small subset of phonemes at a time, while reviewing
and reinforcing the phonemes previously learned. Participants
were also trained on how to combine phonemes to form words
and practiced word identification with a 150-word list. Testing
activities evaluated the word-recognition ability both from a
multiple-choice list and without any visual cuing of possible
choices. This study was reported previously [14].

Study 2: seven participants from the first study returned
twelve months later to perform an additional 150 minutes
of training in five days. After reviewing the haptic phoneme
encoding learned in the first study, participants practiced and
were evaluated on word identification with larger and more
complex word sets (a total of 514 words), and finally on phrase
identification with an inter-word interval (IWI) that was either
pre-determined (3 s) or user-controlled. Performance analysis
included the impact on word-level comprehension of words
containing phonemes not covered by our initial 24 phoneme
encoding (36% of word occurrences) and how contextual
information obtained from identified words in a phrase impacts
both word- and phrase-level comprehension. The findings from
this study constitute the major contribution of this article.

Study 3: the three best performing participants from Study
2 were recruited two months later to engage in conversation
tasks with two naive conversation partners (CP) with expe-
rience in speech science. The study involved the previous
participants receiving spoken messages from the CPs as haptic
stimuli, and responding through text. The conversational tasks
focused on achieving a certain goal (e.g., scheduling a time to
watch a movie), rather than a purely linguistic outcome. The
main goal of this study was to understand how users input

linguistic content to the system and the user experience of
understanding a message encoded as haptic phonemes.

II. WHATSHAP APPARATUS

WhatsHap consists of two vibrotactile transducers (Haptu-
ator Original, Tactile Labs, Montreal, Model no. TL002-14-
A) [15] attached to armbands and connected to a smartphone
or microcomputer. The app renders vibotactile signals through
its standard audio output. One of the armbands is worn near the
wrist, and the other close to the elbow, such that the actuators
are in contact with the dorsal side of the user’s forearm, as
illustrated in Fig. 1. Vibration patterns representing individual
English phonemes are stored as standard stereo audio files.
Words are rendered as a sequence of haptic phonemes with a
1 s inter-phoneme interval (IPI), and phrases with a 3 s IWI.

The app conveys text or speech haptically through a web-
based messaging software, using the Google Speech-to-Text
API1 to convert the utterances to text. It then obtains a phone-
mic representation of the words in North American English
with the CMU Pronouncing Dictionary2 and finally, broadcasts
haptic messages to interlocutors using the apparatus.

A. Phoneme-to-vibrations mapping

Our design supports 24 of the approximately 44 English
phonemes: 15 consonants (/p, b, t, d, k, g, f, v, D, s, z, m,
n, l, ô/), 5 vowels (/i, E, 2, u, A/), and 4 diphthongs (/eI, AI,
AU, oU/). These were selected based on frequency of use in
casual conversation [16] and simplification of inter-phoneme
similarity in which similar-sounding phonemes are replaced
by a common haptic stimulus, where feasible. For example,
the word book (/bUk/) is rendered by replacing the missing
phoneme /U/ with a similar one, i.e., /u/ (e.g., as in boot).
This approach is motivated by the fact that non-native English
speakers may successfully communicate despite not being
completely perceptually sensitive to its phonemic contrasts
[17] [18], and that native listeners are able to integrate top-
down and bottom-up processing to comprehend words despite
superficial phonological errors [19]. This allows the rendering

1https://cloud.google.com/speech-to-text/docs/
2http://www.speech.cs.cmu.edu/cgi-bin/cmudict

https://cloud.google.com/speech-to-text/docs/
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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of a larger set of words while keeping the simple hardware
design and reducing the burden on users when learning the
mapping and mentally decoding the vibrations. Ten phonemes
are rendered with their substitutes: æ→E, j→i, I→i, 3~→2ô,
U→u, O→A, w→u, ï→ng, OI→AI, T→f.

The haptic stimuli were created from the audio waveforms
of a phoneme’s exemplary phone, enhancing salient physical
characteristics during normal speech, e.g., the place in the
vocal tract where the sound is articulated, and the vibration
intensity of the vocal chords. This strategy provides a more
natural mapping that facilitates learning and allows users to
generalize to recognizing novel haptic words. Fig. 2 illustrates
the rendering strategy. The haptic stimuli design is summarized
below. Further details are provided in reference [14].

1) Audio of isolated consonants was obtained from record-
ings of a native English speaker (jbdowse.com/ipa);
audio from vowels and diphtongs was obtained from
computer synthesized speech using Praat (praat.org).

2) The raw audio signal was processed to enhance distinct
features inherent to how speech organs are involved
when producing the sound. For example, the high-
frequency, turbulent sound of fricative phonemes (/f, v,
s, z/)–caused by the air going through a narrow gap
between the lips or teeth–was emphasized by a high
pass filter. The strong, short puff of air characteristic
of the plosives (/p, t, k/) was characterized by changes
in gain. Vowels present the same manner of articulation
and thus were not enhanced in this manner. To improve
discrimination between vowels and consonants, a unique
fade-in and fade-out effect was applied to all vowels.

3) The interaural level difference (ILD) of the two channels
was manipulated to create a spatial (wrist/elbow) pan-
ning indicative of the phoneme’s place of articulation
within the vocal tract. Phonemes produced towards the
front of the mouth (e.g., /p, f, l, i/) are mapped to distal
region of the forearm, while phonemes produced towards
the back of the vocal tract (e.g., /k, ô, u/) are rendered
in the proximal region. The articulation movement char-
acteristic of diphthongs is mimicked by linearly varying
the ILD between the values of the vowels composing
the diphthong, resulting in the perceptual illusion that
the vibration location moves.

4) Finally, audible frequencies not detected by skin recep-
tors were removed with a low-pass filter with cutoff
frequency of 700 Hz.

III. STUDY 1 – PHONEMES AND WORDS

This study focused on delivering basic training on haptic
phonemes to naive participants, and evaluating the feasibility
of using the adopted encoding strategy to render full words.
To facilitate comparison of results, our experimental design,
including training and testing activities, was inspired by pre-
vious work on the topic by Dunkelberger et al. [13].

A. Participants

We recruited fourteen participants (8 male, 22-43 years of
age, x̄ = 29, σ = 6) through university email lists. Only

Fig. 2: Mapping between the vocal tract location where the
phonemes composing the word "notebook" are articulated and
the approximate position in the forearm where the correspond-
ing vibration pattern is felt. Stimuli waveforms are plotted in
the background, with the left channel underneath the wrist and
the right channel underneath the elbow.

one participant (P4) was a native English speaker, one (P11)
reported being non-fluent, and the remaining were fluent. Five
participants (P1, P7, P3, P5, P14) reported having some prior
knowledge of phonetics, and six had received music training.

All participants provided informed consent of the experi-
ment protocol, following Research Ethics Board guidelines,
and received compensation of CAD $60.

B. Experimental Environment

The study was held in a laboratory setting. All training
and testing activities were self-guided and delivered through
a desktop computer. Participants sat in front of the computer
and interacted with the software using a mouse, wearing the
arm bands on the right arm and over-ear headphones with pink
noise played at a comfortable level to block out all residual
sound produced by the vibrotactile transducers.

C. Training and testing protocol

Participants performed 100 min of self-training, spread non-
uniformly over four consecutive days. Training consisted of
i) a free-play panel, in which participants could experiment
with all phonemes being learned, ii) phoneme identification
quizzes, and iii) word construction quizzes, designed to teach
participants how to combine haptic phonemes to form words.

On days 2–4, participants first performed a pre-test on all
phonemes learned so far. They ended with a test of recognition
ability on random words rendered with participant-controlled
inter-phoneme interval (IPI) (Post-Tests and Final Test) and
with a fixed IPI of 1 s (Sequential Post-Test), supported by a
12-option answer list. On the last day, participants typed their
answers to the Open Answer Final Test (OAFT), in which
words were rendered with an IPI of 1 s. This test consisted of
25 words from the 150-word training set and 25 completely
new words, ranging from two to six phonemes (µ = 3.1).

D. Results and Discussion

Excluding one non-compliant participant, the average
phoneme identification score in the final day pre-test was
74.7%. We found that most errors involved fricatives and
vowels (57.5% and 65.2% average accuracy, respectively),
while the other groups presented higher accuracy rates: 92.0%

http://www.jbdowse.com/ipa
http://www.praat.org
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for plosives, 85.3% for nasals and approximants, and 71.8%
for diphtongs. In the Open Answer Final Test (OAFT), in
which phonemes appeared forming a word and were rendered
with a fixed IPI of 1 s, average phoneme identification accuracy
was 68.0%.

Final Test (FT) word accuracy, where participants advanced
through the phonemes composing a word at their own pace
was 94.4%. This compares favorably to the 86.6% observed
in previous work that followed a similar training and testing
protocol [13]. In the OAFT, in which a novel, challenging
condition was implemented (i.e., words rendered with a fixed
IPI and without presentation of a list of response options),
average word accuracy score was 45%.

When comparing word identification accuracy between
participant-controlled phoneme advance (Post-Tests) and fixed
IPI condition (Seq. Post-Test), we found only a slight decrease
(7% on Day 3, not statistically significant on a Student’s t-
test) for words rendered with a fixed IPI. This suggests that
the lack of response clues was the main factor to the decrease
in accuracy observed on OAFT in comparison with FT.

Difficulties in identifying particular phonemes may also
have affected OAFT performance. Given our mapping strategy,
it was expected that participant mistakes would typically
occur between similar-sounding phonemes (i.e., those having
a similar place or manner of articulation), which would have
only minor impact on word comprehension.

This was indeed observed for plosives, vowels, nasals
and approximants. However some fricatives and vowels were
often mistaken for very different phonemes, (e.g., /z/↔/u/;
/s/↔/a/; /E/↔/v/), transforming the sequence of phonemes into
a meaningless, nonsensical sound, preventing participants from
understanding the rendered word.

Considering the limited training time relative to the signif-
icant task of language acquisition, we are encouraged by the
observed scores, which demonstrate the feasibility of learning
to interpret words rendered as a sequence of vibration patterns,
constructed from the audio of the constituent phonemes. Par-
ticipants were picking words from a list of possible responses
during the Final Test, which is an easier task than freely
entering responses. Nevertheless, the high accuracy scores
on phoneme retention obtained on pre-tests, and especially
on OAFT, strongly indicate that participants identified words
based on their constituent phonemes rather than memorizing
chunks of stimuli mapping entire words. Readers interested in
further details may find these in reference [14].

IV. STUDY 2 – PHRASES

A. Participants

We invited all thirteen participants who were compliant
with the instructions from the first study to participate in
this follow-up twelve months later. Seven participants (P2,
P4, P5, P6, P7, P8, P13) returned. Their average phoneme-
recognition (µ = 73%, σ = 17%) and word-identification
(µ = 53%, σ = 14%) scores in the last day of Study
1 are reasonably similar to the scores of the entire set of
participants from Study 1 (µ = 75%, σ = 14% on phonemes
and µ = 45%, σ = 16% on words).

All participants provided informed consent, following Re-
search Ethics Board guidelines, and received compensation of
CAD $100 after completing the experiment.

B. Training and testing protocol

Participants performed 150 min of self-training, spread
across five consecutive days, as illustrated in Fig. 3. The
study was divided into four blocks, progressing from a simple
review (Block 1) to understanding of entire phrases rendered
haptically (Block 4). Each block began and ended with a
test activity, with several rounds of training in between. The
experimental environment was the same as in Study 1.

Our protocol considers findings from the first study showing
that individual phoneme identification ability led to successful
word comprehension. Therefore, phoneme identification was
reinforced in the beginning of each session, constituting half of
the training time in Block 1 and one third of the training time
in Block 2. In addition, participants could switch to the Free-
Play panel at any time if they were encountering difficulties
on more advanced tasks on Blocks 1 and 2.

Block 1 was performed on the first day and served as a
review session containing only activities on phoneme and word
identification using the same 150-word dataset from Study 1.
New training activities were introduced so that participants
could gain more experience with words rendered with a fixed
IPI and responding in an open-answer format, in order to
bridge the gap in difficulty between training and testing phases
informally reported by participants in Study 1.

On the second day, participants performed Block 2, which
continued reinforcing individual phonemes and familiariz-
ing participants with full-word rendering and open-answer
quizzes. The word identification score obtained in the post-test
was used as a benchmark to determine whether participants
would advance to the more challenging activities of Block
3, involving phrases, or would repeat Block 2 the following
day. Participants with an average word-identification score
lower than 60% and a normalized phonological edit distance
greater than 1.03 repeated Block 2 the following day. This
combination of conditions was adopted so participants with
accuracy scores slightly lower than the desired 60% could still
advance to phrase training, as long as most of their errors
were very close to the correct words. Regardless of their
performance on Block 2, all participants were permitted after
their third attempt to advance to Block 3.

Block 3 was dedicated to practicing phrase recognition
at a user-determined pace, i.e., participants controlled when
the next word in the phrase was rendered, and with phrases
constructed from a more advanced word set. The protocol was
designed such that all participants participated in this block
exactly once so that their performance could be compared.

Block 4 was intended as an extra challenge to investigate
participants’ ability to understand entire phrases, constructed
from an even more challenging vocabulary with a fixed IWI

3The phonological edit distance is the number of operations needed to
transform one string to another, weighted by distinctive features [20], [21].
Lower scores correspond to closer words. Values are normalized by the
number of phonemes in the word. Some examples: a-eye= 4.3, soon-son=
1.7, snow-rain=6.9, won’t-work=4.3
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Fig. 3: Training and testing protocol for Study 2. Training (filled-in boxes) is time-limited, while test activities (dash-outline
boxes) have a fixed number of trials. The data sets used are indicated in each activity. S1-150: words from Study 1; S1-50:
shortest words from S1-150; PHO-C: consonant phonemes; PHO-V: vowel phonemes; S1-OAFT: untrained words from Study
1 Open Answer Final Test; S1-MINPAIR: words differing by a single phoneme from words in S1-150; CTX: phrases related
to a context, e.g., shopping for clothes; ADV: advanced phrases.

of 3 s. Only participants who had passed Block 2 within two
attempts performed this block. Since Block 3 was performed
only once, participants who successfully completed Block 2
on the first attempt performed Block 4 twice.

Following the last session, participants completed a short
questionnaire regarding their experience using the apparatus
during training and testing.

We now describe each of the training and testing activities
adopted in this study, and provide further details of the word
and phrase sets used, as summarized in Table I.

C. Training Activities

We extended Study 1 activities to include practice on word
formation with a fixed inter-phoneme interval (IPI), in addition
to the training of entire haptic phrases, as summarized below.
All training quizzes are time-limited and provide correct-
answer-feedback, delivered visually and haptically.

Phoneme Free-Play: participants can experiment with all
phonemes being learned. A diagram with the vocal tract
when uttering the phoneme and a visual representation of the
vibration stimulus are also displayed.

Phoneme Review with Pre-Test: participants perform a
phoneme identification Pre-Test, and are able to review all
phonemes through the Free-play panel, in which scores are
displayed beside each phoneme. Once participants feel confi-
dent, they advance to a phoneme identification quiz.

Word Identification Quiz: a random word is selected from
the same set used in Study 1 (S1-150) and is rendered with an
user-controlled IPI. Participants are requested to identify the
word from a multiple-choice list containing 12 random words.

Word Identification – Sequential: same as Word Identifi-
cation Quiz but with a IPI of 1 s.

Word Identification – Open Answer: same as the previous
activity, but without the multiple-choice list. Participants type
their answers in a single text box.

Phrase Construction: a randomly selected phrase from our
phrase set4 is rendered, one word at a time. Participants control
advancement. They can type their answer at any time, each
word in a specific text box, and submit the entire response after
the last word is rendered. The phrase sets used in this activity
increase in difficulty over time in terms of the portion of new
words (not in S1-150) constituting each phrase, and include
vocabulary rendered with substitute phonemes (see Table I for
details). Participants were not explicitly informed whether a
word included a substitute phoneme.

Phrase Identification: a longer random phrase (µ = 5.1
words/phrase) than used in the previous sets is rendered
with a fixed IWI of 3 s. Participants type their answer in
a single text box. Most of the phrases (88.7%) include at
least one word containing a substitute phoneme. Individual
words rendered with a substitute phoneme account for 42.3%
of word occurrences within the set of phrases. As in the
previous activity, participants were not explicitly informed
whether words were being rendered with a substitute phoneme.

D. Testing activities

These activities are performed in the same manner as
their equivalently named training counterparts, but with a
fixed number of trials5 and without providing correct-answer
feedback. Thus, they do not count towards training time.

Block 1 – Word Identification Open Answer: Twenty
words are rendered: ten from S1-150, and another ten from
the untrained set S1-OAFT. This is the same test as the Study
1 Open Answer Final Test, differing only in number of trials.

Block 2 – Word Identification Open Answer: a total
of twenty words are rendered: ten from S1-150 and another
ten from S1-MINPAIR, a 101-word set containing S1-150
minimal pairs, which differ only by a single phoneme (e.g.,

4Available at srl.mcgill.ca/toh/hapticspeech
5Participants encountering major difficulties were asked to stop after 15 min,

which was the case for only one participant (P6).

srl.mcgill.ca/toh/hapticspeech
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TABLE I: Summary of word and phrase sets used during
training and testing, available at srl.mcgill.ca/toh/hapticspeech

Set Name Phrases Words Phonemes
(µ, σ)

Words/Phr.
(µ, σ)

Subs.a
(%)

S1-50 - 50 2.6, 0.7 - 0.0

S1-150 - 150 3.1, 1.0 - 0.0

B3-EASYb 38 86 3.2, 1.2 3.3, 0.8 13.5

B3-MEDIUMc 52 122 3.2, 1.1 4.0, 1.1 28.0

B3-HARDd 25 67 3.3, 1.3 4.0, 1.1 37.8

B3-CTXe 35 84 3.7, 1.4 3.3, 1.0 46.1

B4-ADV 159 368 3.7, 1.5 5.1, 1.2 42.3

S1-OAFT - 50 3.1, 0.9 - 0

S1-MINPAIRf - 101 3.0, 0.6 - 0

FT-EASYg 12 34 2.9, 1.1 3.5, 0.5 35.7

FT-HARDh 12 35 3.4, 1.3 3.3, 0.5 35.9

FT-ADV 25 99 3.3, 1.2 5.6, 1.3 50.0

ALL 274 514 3.7, 1.4 4.4, 1.5 40.9i

a Word occurrences rendered with at least one substitute phoneme.
b 0–33% c 34–66% d 67–100% new words
e Phrases related to a specific context (e.g., shopping for clothes)
f Words differing by only one phoneme from words in S1-150
g 0–33% h 67-100% untrained words
i 8.4 with more than one substitute phoneme

make–lake). The score achieved in this test determines whether
a participant should advance to phrase training.

Block 3 Final Test – Phrase Construction: ten untrained
phrases are rendered in total: five from FT-EASY, with phrases
having at most 33% of untrained words, and five from FT-
HARD, in which phrases contain at least 66% completely new
words. This test investigated the extent to which additional lin-
guistic information, i.e., the surrounding words in the phrase,
could be leveraged to improve individual word recognition.

Block 4 Advanced Test – Phrase Identification: ten
untrained phrases selected from FT-ADV are rendered with
a predetermined interval between words. Sentences are longer
than in the previous tests (µ = 5.6 words/phrase), and all
include at least one word rendered with a substitute phoneme.

E. Results

1) Remembering and identifying phonemes: The phoneme
identification accuracy scores, defined as the number of cor-
rectly identified phonemes divided by the number of trials on
the daily pre-tests are shown in Fig. 4. The scores from the
Study 1 Open Answer Final Test are also plotted for compari-
son. On average, participants remembered 22.2% of phonemes
after one year without using the apparatus. With an additional
30 min of training (15 min dedicated exclusively to phonemes),
participants were able to reach a level of performance similar
to that from Study 1 (64.7% vs. 73.0%). Their average score
from Study 1 was surpassed after 60 min of additional training
and continued to increase as more training was performed.
After the review session (Block 1), scores increased at a linear
(R2 = 0.98) rate of 13.4 %/h or the equivalent of 3.2 new
phonemes per hour.

2) Understanding words: Participants were not at first able
to recognize words after one year since their last contact with
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Fig. 4: Pre-test phoneme identification accuracy scores. Aver-
age scores across all participants are shown as the black line.
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Fig. 5: Post-test word identification accuracy. Average scores
consider only those participants performing the particular
session. Blocks 2 a1–a3 represent the three possible attempts
to achieve the minimum score for advancing to Block 3.

the apparatus (Block 1 Word Id. Pre-test µ = 2%). Fig. 5
shows how word identification accuracy scores (i.e., number
of correctly identified words divided by the number of quiz
trials) evolved throughout training. On average, participants
presented little progress in the first 60 min (Block 2 a1)
(28.4%), but were able to reach 53.6% after one more session
(Block 2 a2), similar to the accuracy obtained in the first study
(52.3%). One participant (P2) reached the 60% threshold on
word identification accuracy to advance to phrase training in
the first Block 2 attempt. Two more participants advanced
to Block 3 after one additional training day (P7 with 60%
accuracy and P13 with a normalized phonological edit distance
of 0.6). The remaining four participants performed Block 2 for
one last additional session but only P8 demonstrated improved
accuracy (55.0% to 70.0%). We cannot conclude whether these
participants performed worse due to external factors, such as
fatigue or stress, or because they had reached the limit of their
ability after two attempts. Additional days of training with the
same block would be required to answer this question.

To better understand the severity of participants’ mistakes,

http://srl.mcgill.ca/toh/hapticspeech
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Fig. 6: Normalized phonological edit distance on post-tests.

we also calculated the normalized phonological edit distance
throughout the training sessions, as presented in Fig. 6. Al-
though participants did not improve significantly in terms of
word identification accuracy after the first Block 2 training
session (Block 2 a1) (4.2%), the 0.6 decrease (from 2.6 to
2.0) in phonological edit distance in the same time frame
indicates that they were comprehending a larger number of
phonemes and getting closer to the correct words. The average
phonological distance continued to decrease with an additional
30 min of training (Block 2 a2), reaching a level that permitted
understanding of entire words. This can be observed in the
large increase (28% to 51%) in word identification accuracy
score from the plateau of Block 2 a1 to a2.

We wished to determine whether participants would rely
on the constituent haptic phonemes or would attempt to
memorize and associate the entire stimulus sequence as a
word. As shown in Fig. 7, the similar accuracy of word
identification on the training set (S1-150) and untrained words
(S1-MINPAIR), achieved during the last session on Block 2,
suggests the former. A statistical test would not be meaningful
here given the limited number of participants in the sample.
We also calculated the correlation between phoneme (pre-
tests) and word identification scores (post-tests). A repeated
measures correlation test [22] attained a pvalue < 0.01,
confirming significant correlation with a strong association
(rmcorr coefficient of 0.68 and achieved power of 0.97). Fig. 8
shows the linear fit obtained by aggregating the data across all
participants, plotted for each participant’s data.

3) Words rendered with a substitute phoneme: We com-
pared participants’ performance on trials of “mispronounced”
words (i.e., incorporating one or more phonemes from a substi-
tute set, as a strategy to cover a larger number of words without
additional haptic symbols) against trials of words composed
entirely of exact phonemes from the covered subset during
the Block 3 post-test. Performance on the two groups was of
a similar level of accuracy (µ = 62.5%, σ = 19.5% for the
words with one or more substitute phonemes vs. µ = 66.5%,
σ = 17.5% for the words with all-exact phonemes). However,
the difference in the average phonological edit distance per
word (µ = 6.1, σ = 3.4 vs. µ = 3.6, σ = 2.3) indicates that
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Fig. 7: Word and phoneme identification accuracy scores for
words in the training set (S1-150) and untrained minimal pairs
(S1-MINPAIR) for participants’ last session of Block 2.
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Fig. 8: Repeated measures correlation of the accuracy scores
between phoneme identification (pre-tests) and word identi-
fication (post-tests). Data are plotted for each participant to
demonstrate that the general fit applies individually.

the use of a substitute phoneme may aggravate the participants’
errors when decoding the word.

4) Understanding words within a phrase: The word iden-
tification accuracy scores from Block 3 post-test, in which
words appeared within the context of a phrase rather than
individually, are plotted in Fig. 9.

Participants correctly identified an average of 65% of the
rendered words. The normalized phonological edit distance
(µ = 1.3, σ = 0.7) indicates the severity of their mistakes:
these were typically of the form of understanding slow as
snow (or goat as gate) for every rendered word. Compar-
ing the accuracy scores for words appearing in phrases of
Block 3 against the highest scores achieved during pure word
identification tasks in Block 2 (Fig. 5), four participants (P4,
P2, P5, P6) demonstrated improvement (70%, 40%, 35%,
11%, respectively), while the remaining three (P7, P8, P13)
demonstrated a relative decrease in performance (−9%, −8%,
−14%). On average, accuracy increased from 56% to 65%. No
significant difference was found by a Friedman test (p > 0.1)
between the easy and hard phrase sets in terms of word
accuracy (65% vs. 66%), nor normalized phonological edit
distance (µ = 1.2 vs. µ = 1.3, σ = 0.6).
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Fig. 9: Accuracy scores in terms of phrases and words cor-
rectly identified on Block 3 – post-test.

5) Understanding Phrases: Fig. 9 presents accuracy scores
on phrases and their constituent words in Block 3 – Phrase
Construction post-test. On average, participants recognized the
entire phrase in 42% of trials, with similar scores between
easy and hard phrases sets, indicating that participants were
able to generalize their haptic phoneme knowledge to the
understanding of untrained vocabulary.

6) Advanced Phrases: One participant (P2) reached Block
4 by the fourth experimental session, and thus performed
this block twice, correctly identifying 47.3% and 58.5% of
the words, with normalized phonological edit distance of 2.5
and 1.7, indicative of the increased difficulty of recognition
with fixed inter-word intervals. Examples of some of the best
trials include “please tell me if you feel any pain”, in which
P2 only omitted “any”, the successful “get into the room”
and “when are you going?”. Two other participants (P7 and
P13) performed Block 4 once, attaining word identification
accuracy of 33.3% and 29.6%, and normalized phonological
edit distance of 2.8 and 3.0, respectively.

7) Post-Questionnaires: Fig. 10 presents participants’ re-
sponses regarding their experience with the apparatus and
mapping strategy, measured on a 5-point Likert scale.

F. Discussion

Participants could still remember some of the haptic
phonemes one year after last using the apparatus. Nevertheless,
this residual knowledge did not lead to a faster learning pace
in the second study, as demonstrated by the phoneme and
word identification accuracy, as well as the phonological edit
distance scores throughout the sessions.

The similarity of scores obtained on untrained and trained
words, in addition to the high correlation between phoneme
and word identification accuracy scores, indicates that partic-
ipants identified words based on their constituent phonemes,
instead of memorizing and associating chunks of stimuli with
words. This was also observed in phrase understanding results,
for which participants demonstrated similar performance, re-
gardless of whether the phrases were constituted predomi-
nantly of words from the trained or untrained vocabulary.

Indeed, this was confirmed by the responses to our post-
questionnaire, shown in Figure 10.

Substituting similar-sounding phonemes with a common
haptic stimulus allowed us to cover 34 phonemes with only
24 distinct haptic representations, consequently minimizing
hardware demands. Significantly, this strategy allows to convey
95% of phoneme occurrences in conversational English [16],
compared to 71% when using only the original subset of
24 phonemes. The drawback is that minimal pairs involving
such potentially substitute phonemes (e.g., man–men, eat–it,
peel–pill) can only be correctly identified with the support of
contextual information such as the other words in the phrase.

Direct comparison of accuracy scores with other literature is
unfortunately not straightforward due to significant differences
between experimental conditions, including vocabulary size
and complexity, total training time, and the available sup-
port during testing (e.g., answer options list, inter-phoneme
and inter-word intervals controlled by participants). Table II
presents an overview of the various works in this area.

Using a discrete-based encoding, Tan et al. [30] demon-
strated an average word identification accuracy of 77% on
a 251-word set after 5.3 h of training. When the set was
expanded to 500 words, the average accuracy dropped to
62% even with additional 1.3 h of training (6.6 h in total),
suggesting that recognition is dependent on training of each
word. In addition, since 90% of words in their word set were
composed of 1–3 phonemes, it is unclear whether participants
would be able to generalize their haptic phoneme knowledge to
the understanding of untrained and more complex vocabulary.

To the best of our knowledge, this work represents the first
assessment of phrases rendered haptically without any kind of
additional support. Although some works relying on vocoders
[24] [31] have explored the rendering of entire sentences, their
devices were intended to function as a complement to lip-
reading, for which participants were also presented with video
recording of the speaker’s face. Approaches based on a discrete
mapping have not explored the rendering of entire phrases.

In the final phase of Block 3, in which participants con-
trolled the pace of word rendering, 42% of phrases and 65%
of words were correctly identified. Analysis of the extent by
which contextual information from identified words in a phrase
support overall word identification accuracy was inconclusive.
Some participants demonstrated improved accuracy when the
words were presented in a phrase (Block 3), perhaps benefiting
from the additional 30 min of training, but others performed
better on single words in isolation (Block 2), possibly due to
the increased difficulty of the word set used in phrases.

Under the more realistic conditions of Block 4, in which
phrases were rendered with a fixed IWI, participants achieved
a modest average word accuracy of 41%. Since we observed
similar accuracy scores between untrained and trained words,
the drop in performance can be explained by the participants’
lack of experience (µ = 21 min) with this testing condition.
This required word decoding at a much faster pace and longer
retention of the previous elements (i.e., comprehended and
partially comprehended words and phonemes) in working
memory, resulting in higher cognitive load.

Given the limited training exposure to the final conditions in
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0% 20% 40% 60% 80% 100%

  Disagree   Neutral   Agree   Strongly Agree

The vibration patterns resemble the physical characteristics when speaking the corresponding 
phonemes

The mapping strategy between phonemes and vibration patterns based on the physical
characteristics when speaking facilited the learning process

When trying to identify a word, I first identified the individual phonemes and then combined 
them to form a word

When trying to identify a word, I tried to remember the vibration pattern of the whole word 
rather than its invidual phonemes

The words previously identified within a sentence helped me to identify the rest of the words in 
that sentence

Fig. 10: Post-questionnaire responses—understanding haptic words and phrases.

Block 4, we emphasize that these scores do not represent a fi-
nal performance metric of the device. Rather, they demonstrate
the feasibility of rendering complex phrases through the sense
of touch with minimal training time: 4.2 h in total and 2.7 h,
ignoring the initial 90 min training (on average) in Study 2
required for participants to regain their performance from the
end of Study 1. This training time is several times shorter
than works employing vocoders, limited to the rendering of
words (55 h on a 150-word list [7]), and comparable with
works relying on a discrete mapping (1.7 h on a 100-word
list [28], 6.6 h on 500 words [30]).

We expect that after extensive training, stimuli sequences
may be decoded as chunks corresponding to longer lexical
structures (e.g., syllables, morphemes), similarly to natural
language acquisition [32]. This would allow shorter IPI and
IWI, leading to decreased cognitive load and facilitating over-
all comprehension, as mentioned informally by participants.

The observed large individual difference across participants
also indicates the need for a more flexible and user-centered
training protocol, rather than the fixed structure applied in this
study. A compelling strategy is to impose certain minimum
scores on all post-tests before allowing participants to advance
to the next training stages, rather than using a time-limited
approach. This would guarantee as much training time as
needed under a manageable level of difficulty before advancing
to more complex tasks. Spreading training over a longer period
would also leverage the memory consolidation effect.

We hypothesise that with such a training protocol, partici-
pants could achieve sufficiently high accuracy on the identi-
fication of entire phrases composed of a complex vocabulary,
allowing them to participate in conversations receiving speech
solely as vibrations delivered to the forearm.

V. STUDY 3 – SPEECH-TO-HAPTIC CONVERSATION

Haptic speech replacement shows promise in mediating
conversation in situations where traditional sensory modalities
to convey linguistic content may be infeasible, such as in
the cockpit of an airplane where sensory information may
saturate the visual and auditory capacities of a pilot. One of
the most popular modes of computer mediated conversation
is through messaging apps. Motivated by the results of our
previous studies, we thus considered a haptic messaging
app as an ideal starting point for a working prototype of a
system to mediate haptic conversation between interlocutors.
We evaluate the user experience of haptic conversation after

minimal training—including how interlocutors adjust their
language when speaking haptically, circumstances when haptic
communication is most useful, and practical design consid-
erations for such an app. In contrast with many other in-
lab studies, this study elicited spontaneous speech and semi-
structured bidirectional conversation between participants, and
thus provides insight to how such a system may ultimately be
used for communication in more natural circumstances.

A. Participants

Three top performing participants from the previous two
studies (P2, P4, P8, hereafter “haptic listeners”), as well as
two naive participants with knowledge of speech science were
recruited two months after the completion of Study 2. All six
unique pairings of haptic listeners and naive participants per-
formed the study. Having each naive participant run sessions
with all three haptic listeners allowed us to understand how
the former learnt the system over repeated sessions.

B. Protocol

The study was conducted over two consecutive days. On the
first day, the haptic listeners were allowed 30 min to review the
haptic phonemes and practice phrase identification, performing
Blocks 3 and 4 activities from Study 2, as per their preference.
The second day, each pair of naive participant and haptic
listener were placed in separate rooms to conduct the study.
Haptic listeners wore headphones playing masking pink noise,
with the apparatus attached to their arm as in the previous
studies. The naive participants spoke into the messaging app,
which translated their utterances to patterned vibrations. These
were rendered on the arms of the haptic listeners, who in turn,
replied by text message to the naive speaker.

The participants were asked to cooperate to complete several
communication tasks together, such as figuring out a time to
see a movie or ordering food for a restaurant. These tasks were
chosen to overcome a gap in information or collaboratively
reason about a problem, using open, unrestricted language.

We recorded the number of turns to complete a task, text
of exchanged messages, response time, UI telemetry (e.g., the
number of times a certain button was clicked, timing between
clicks), and qualitative notes of user experience. To assess
communication accuracy, we also asked the haptic listeners
to confirm what they “heard” by typing as text the contents of
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TABLE II: Comparison of haptic speech rendering approaches from the literature
.

Apparatus Training Testing

Author (year) # Actuators
(location)

Basic Unit
(# symbols) Time (h) Set Size Set Details Support Accuracy

Untrained
Accuracy
Trained

Brooks & Frost
(1983) [7] 16 (forearm) SPC 55 150 W - None - 80% Wa

Brooks et al.
(1985) [23] 16 (forearm) SPC 80 250 W - None - 76% Wa

Eberhardt et al.
(1990) [24] 1 (table) SPC 17 40 PHR 6–9 SYL/PHR Lipreading 33% W -

Galvin et al.
(1999) [25] 8 (fingers) SPC 12 31 W - None - 70–80% Wa

Novich
(2015) [26] 27 (back) SPC 11 daysb 50 W 1 SYL/W CS (4) 30% W 35–65% W

Liao et al.
(2016) [9] 4 (wrist) L (26) 1 26 L - None - 86% L

Luzhnica et al.
(2016) [10] 6 (hand) L (26) 5 98 W 2–5 L/W Replay - 94% L

Zhao et al.
(2018) [27] 6 (forearm) PHO (9) 0.5 20 W 2–3 PHO/W None 55% W 76% W

Reed et al.
(2018) [12] 24 (forearm) PHO (39) 1.9 39 PHO - CS (39) - 86% PHO

Jiao et al.
(2018) [28] 24 (forearm) PHO (39) 1.7 100 W 2–3 PHO/W CS (100) - 81% W

Turcott et al.
(2018) [29] 12 (forearm) PHO (10) 0.8 20 W 2–3 PHO/W CS (10) - 76% W

Dunkelberger et a
[13] 4 (arm) PHO (23) 1.7 150 W 1–6 PHO/W (µ = 3.1) CS (12)

USR-IPI - 87% W

Luzhnica & Veas
(2019) [11] 7 (hand) L (26) 4.7 98 W 2–5 L/W Replay - 96% Lc

de Vargas et al.
(2019) [14] 2 (forearm) PHO (24) 1.7 150 W

1–6 PHO/W (µ = 3.1) CS (12)
USR-IPI - 94% W

2–6 PHO/W (µ = 3.1) None 39% W 51% W
Tan et al.
(2020) [30] 24 (forearm) PHO (39) 6.6 500 W 1–5 PHO/W (µ = 2.9) None - 62% W

Block 3 of this
work

2 (forearm) PHO (24)
2.2–3.7 150 PHR

(292 W)
2–6 W/PHR (µ = 3.6)

31% SUB USR-IWI 65% W 65% W

Block 4 of this
work 2.7–4.2 225 PHR

(514 W)
4–8 W/PHR (µ = 5.6)

42% SUB None 30–59% W -

CS: closed set SPC: spectral-based L: letter W: word PHO: phoneme PHR: phrase SUB: words with substitute phoneme(s)
USR-IPI: user-controlled inter-phoneme interval USR-IWI: user-controlled inter-word interval a threshold b 300 trials/day c Lev. dist.

what they thought they received from their conversation part-
ner (CP). Each session concluded with an informal interview
with all participants to assess their experience.

C. Results and discussion

We found that interlocutors had to adjust their conversation
style in order to effectively communicate using the system.
During early sessions, naive participants would speak using
long phrases, using many phatic expressions, closely resem-
bling how they would speak during live in-person conversa-
tions (e.g. “How are you?. . . Great, do you want to play a
board game?”). Over time, their language became more direct,
with less words, often dropping the subject of their clause
(e.g. “Friday night menu?”). The mean number of words in
phrases exchanged in the first session was 5.47, with a max
message length of 9 words. By the last session, participants
were exchanging messages with a mean of 3.08 words. The
haptic listeners’ phonological accuracy—their ability to un-
derstand the utterances based off of their precise phonemic
constituents—was measured by the phonological edit distance

between what the naive speaker said and the haptic listeners’
confirmations. Here, we modify this measure from that used
in Study 1 so that a value of 1.0 is a perfect match, and 0 is
a mismatch. This was achieved by modifying the normalizing
expression as the distance between the target string and empty
string, and subtracting the result from 1, as follows:

1−min(
pEditDistance(str1, str2)

pEditDistance(str1,"")
, 1) (1)

Across all sessions, haptic listeners achieved a phonological
accuracy of 0.73. There was an upward trend over time, with
the mean accuracy increasing from 0.49 in the first session
to 0.92 in the final session. Due to our small sample size,
we are unable to confirm whether this is due to the individ-
ual capabilities of the haptic listeners or the communication
methods of the naive speakers becoming more effective over
time. Despite limitations of phonological accuracy, participants
were still able to determine the gist of what their CP was
saying, as 87.5% of all communication tasks were successfully
completed. Many participants noted that the system was best
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suited for more information-centered communication, as it was
imperative to be concise and difficult to convey suprasegmental
features, such as tone of voice, in their messages. S1 remarked,
“[this is best when] you already have a real conversation
happening in some other context. . . and this is like a confir-
mation check”, further emphasizing “[you wouldn’t use it to]
ask, ‘what do you want to do?”’ S2 noted differing strategies
of abbreviation: “[in a conventional messaging app] I would
normally say ‘Mon’ for Monday, but then it’s weird to say
Mon. . . Instead of using abbreviations or shortenings I just took
out full words”. Participants noted some difficulty in the lack
of such aspects as tone of voice in a phoneme-based haptic
encoding. This loses both emotional and semantic aspects
of their speech, which, for example, masks the distinction
between an upward tone at the end of the phrase indicating a
question, and a static or downward tone indicating a statement.

Haptic listeners tended to replay messages frequently with
the “play” button, with an average 3.36 replays during the
first session, reducing to 1.88 replays in the last session. H3,
a haptic listener, said “longer sentences were harder for me
to get in one go. . . by the time you get to the end of the
sentence you forget”. Supplying novice haptic listeners with
functionality to replay, or memory aids to help recollect earlier
elements of the phrase, may thus be an important design factor.

Regarding the encoding system, S1 commented “It’s a
good setup from a theoretical linguistics perspective. . . but
linguistics isn’t necessarily based off how people learn about
stuff” noting that the average English speaker does not possess
significant phonetic awareness, giving the system a steeper
learning curve. H3, a native Hindi speaker, noted that Hindi
is typically taught in terms of its articulatory phonetics, and
felt that this background offered him an advantage.

VI. CONCLUSION AND FUTURE WORK

We have presented the findings from a series of three
studies where participants learned how to use WhatsHap, and
ultimately completed a simple communicative task that elicited
spontaneous speech and semi-structured bidirectional conver-
sation using the device. The training process involved learning
a set of 24 vibration patterns representing English phonemes,
recognizing words from a sequence of haptic phonemes, and
getting habituated to the rendering of entire phrases. After
only 4.2 h of training, participants were able to generalize
their phoneme identification skills to the understanding of
untrained vocabulary, reaching an average word accuracy score
of 65% on phrases presented with a user-controlled inter-
word interval, and even more encouraging, up to 59% when
phrases were rendered with an inter-word interval of 3 s. Three
top-performing participants also engaged in communicative
tasks in which they had to overcome a gap in information
or collaboratively reasons about a problem using open, un-
restricted language, receiving a conversation partner’s speech
entirely as vibrotactile actuation. Despite their limitations on
phonological accuracy, participants were able to determine the
gist of what their conversation partner was saying, as 87.5%
of all communication tasks were successfully completed.

The analysis of communication on these semi-structured
bidirectional conversations using WhatsHap also revealed lim-

itations in the ability of the encoding system to represent
aspects of emotion or prosody in the message. There is
also a question of how to optimize the encoding system
for perceptually improved rendering and response times. As
one of the participants reported, a morpheme- or syllable-
based encoding system may speed up the response times. In
languages such as English, having a distinct tacton for each
morpheme may lead to an unnecessarily large haptic lexicon.
However, using the current phoneme rendering system, we
could imagine delivering stimuli rapidly with only large delays
between morpheme or word boundaries, and aim to train par-
ticipants to recognize morphemes instead of phonemes, letting
them implicitly infer any phonemic constituents. An alternative
encoding could combine a phonetics based approach with a
phonology based approach. Numerous haptic speech rendering
approaches, including our own, map a discrete set of vibro-
tactile symbols to a set of symbolic characters representing
the speech sounds. Instead, in a phonetics-based encoding, the
patterned vibrations would be based on physical aspects of the
speech signal, similar to early efforts on vocoder-based haptic
speech replacement, or to more recent systems that translate
the audio waveforms directly to vibration through multichan-
nel haptic vests [26]. A benefit of a phonetics based approach
is that it preserves suprasegmental aspects of speech associated
with emotion and tone. Incorporating acoustic aspects of the
speech signal into our encoding system may address some of
the limitations revealed—for example, F0 tracking could help
disambiguate yes-no questions from statements.

Another promising direction of future research involves
training naive users with self-administrated activities person-
alized to their skill level over an extensive period (e.g., 50 h).
The simple design of WhatsHap allows deployment of “haptic
speech learning kits” that users could use in the comfort of
their homes. This would allow investigation of our encoding
strategy in terms of word recognition accuracy and delivery
rate, as we seek to achieve communication rates suitable for
face-to-face interactions in real-world scenarios. Finally, a
study could be run with people with hearing disabilities but
preserved phonological awareness to identify features useful
for this population and inform the redesign of the apparatus.
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