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ABSTRACT

When a person stands between a projector and a display surface a shadow

occurs. We show a method to perform shadow removal using camera-based object

tracking and a three-dimensional model of a room, which includes cameras,

projectors, and flat surfaces. For tracking people, although we use cameras, other

methods would work. To obtain the model, we adapted and use existing geometric

calibration methods. With the tracking and model information, our algorithm

finds in the projector image the region that is occluded by a person. Another

projector can then automatically fill the region with equal intensity and identical

color to that of the occluded projector. We found that calibration and tracking

were accurate, and that the system could correctly and efficiently perform shadow

removal, providing a more appealing visual experience to users of multi-projector

displays.
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SOMMAIRE

Lorsqu’une personne se tient entre un projecteur et une surface d’affichage une

ombre apparaît. Nous démontrons une méthode pour éliminer les ombres en util-

isant la poursuite d’objets par caméras et un modèle tridimensionnel d’une pièce,

qui inclut les caméras, les projecteurs et les surfaces plates. Pour la poursuite de

personnes, quoique nous utilisons des caméras, d’autres méthodes fonctionneraient.

Pour obtenir le modèle, nous avons adapté et utilisons des méthodes de calibration

géométrique existantes. Avec l’information sur la poursuite et le modèle, notre

algorithme trouve dans l’image d’un projecteur la région qui est occluse par une

personne. Un autre projecteur peut alors automatiquement remplir la région avec

les mêmes intensités et couleurs que celles du projecteur occlus. Nous avons trouvé

que la calibration et la poursuite étaient exactes et que le système était capable

d’éliminer correctement et efficacement les ombres, procurant une expérience

visuelle plus attrayante aux utilisateurs de l’affichage à projecteurs multiples.
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CHAPTER 1
Introduction

We propose a new method to perform shadow removal from multi-projector

displays, but before going into the technical details, we first provide an overview

of the field to which this research applies, the outstanding issues and a review of

other related works currently available in the literature.

1.1 Field of Research

With respect to the field of research, our work falls mainly into the domain of

virtual reality, a technology that allows people to interact with a 3D environment

generated and displayed by computers. Although the relevance of many systems

rise and fall, the interest in the CAVE (Cave Automatic Virtual Environment)

remains strong as can be seen from the large number of installations in universities

and other institutions worldwide [10, 47]. Cruz-Neira et al . developed the first

CAVE in 1992 [11, 12] and it has since become a major player in the field of im-

mersive virtual reality, where computer-generated graphics completely encompass

a user’s field of view. A CAVE consists of a room equipped with three or more

screens enclosing a space in the middle of the room, where projectors display

images from behind the screens traditionally with the help of mirrors, a technique

known as back projection. Unlike other methods, such as virtual reality goggles

(head-mounted displays), when using a CAVE, multiple users can to a certain

extent naturally interact with each other while experiencing the same virtual
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environment at the same time. Users can also easily manipulate real objects within

the confines of the CAVE. For these reasons, this kind of virtual reality technology

has gained great interest in the scientific and engineering communities allowing

teams of researchers to analyze data more quickly and easily. Interest in such

technology is also growing for its many potential applications to telepresence or

shared reality [8], and multimedia entertainment. For example, related and recently

developed immersive technologies such as Cisco TelePresence receive millions of

dollars in research and development [40].

1.2 Outstanding Issues

Unfortunately, it is not practical to mount and unmount a CAVE whenever

needed, and consequently room space usually needs to be reserved. An alternative

to back projection used by the CAVE is front projection, such as used in the Office

of the Future [31]. In a front projection configuration, projectors are mounted

in front of the screen and they do not need mirrors or screens in the middle

of a room. Front projection installations thus use less space than equivalent

rear projection configurations, and by its nature one projector can cover more

surface than a monitor. Considering how commonly people use projectors in this

fashion, front projection can considerably increase the attractiveness of CAVE-like

environments.

However, front projection has disadvantages as well. First, projectors are

installed according to the configuration of the room and are not necessarily

placed right in front of the display surface, causing geometric distortion. Second,

a casually chosen display surface (curtains, painted wall, etc.) might not be
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flat and might not perfectly reflect projector light. Third, when projecting an

image at an angle from the display surface, parts of the image might be out of

focus. Fortunately, researchers have done extensive work in developing methods

to compensate for these disadvantages. The Metaverse by Jaynes et al . [21]

and the system developed by Bimber et al . [3] are good examples of the latest

developments in this direction. Unfortunately, even with these sophisticated

methods, when a person moves in between a projector and the display surface a

shadow still occurs. This is one important remaining problem of front projection

displays, negatively affecting the experience of a user [35, 36].

In many situations, we can manage shadows by appropriately positioning

projectors and constraining the allowed locations at which people can stand. When

this is not possible, such as in small rooms, we can use techniques where multiple

projectors are configured so they produce the same image at the same place on the

display surface. This is also known as Passive Virtual Rear Projection. The image

thus remains visible even if a person occludes one projector. This configuration can

be achieved by transforming the images before their projection so they match with

the reference frame [30, 31, 43, 45]. For a flat display surface, the transformation

may be a simple homography, as we explain later in this work. Color correction

and multi-focal projection are also desirable, although outside the scope of our

work.

With the previous approach, although the image remains visible during

occlusion, the resulting differences in display intensity remain perceptible. To

compensate, shadow removal methods determine the display region in which a
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(a) Before corrections. (b) After corrections.

Figure 1–1: Ideal front projection where distortion, colors and shadows are all
corrected.

shadow occurs. Another projector can then fill the region with equal intensity and

identical color to that of the occluded projector, as in the ideal case depicted in

Figure 1–1. This is also known as Active Virtual Rear Projection. However, as

described in the next section, current methods suffer from a number of limitations.

1.3 Literature Review

All shadow removal methods for front projection have one thing in common.

They all use at least two projectors to cover any given region of the display

surface. Still, current methods can be divided into two main families: shadow

detection and occlusion detection. In the former, we use cameras to watch the

display surface and detect regions with undesirable lowering of intensity caused

by shadows. We compensate for these changes by increasing the output of the

projectors to recover the desired brightness in those regions. On the other hand,

with occlusion detection, the idea is to use other information instead of the display

content and to segment out the occlusion occurring in front of a projector. These

methods need to be insensitive to a changing display and attempt the operation
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by using color transfer functions to predict the background, by modelling the

background in a generic manner, by using synchronized camera-projector systems

to produce patterns imperceptible to the human eye, or by using infrared cameras,

which are insensitive to projector light. When the occlusion in front of a projector

is detected in this fashion, we can directly use the information to create masks for

the projectors.

1.3.1 Shadow Detection Methods

The first shadow removal methods that were developed detect shadows on

the display surface [6, 18, 22, 23, 34]. These methods work by comparing the

image displayed by the projectors to the image as seen by a set of cameras, after

compensating for geometric and radiometric color differences between them.

Therefore, this operation can only remove shadows after they appear and becomes

increasingly complex in the case of video projection, since to compare correctly

we need to know the precise delay incurred in the projectors, in the cameras, and

in processing. An additional constraint is that we need to be able to reconstruct

an unoccluded view of the entire display surface using the cameras, or the system

cannot function properly. Furthermore, flickering may result when the system no

longer observes a shadow and incorrectly assumes the region to be unoccluded.

Sukthankar et al . [34] are the first to have tackled the problem of shadow

removal from multi-projector displays. Their fundamental contribution was the

use of more than one projector to cover the same area of the display surface. With

this redundant configuration, when an occlusion occurs in front of one projector,

the content of the projection remains visible on the display surface. To lower the

5



chances that more than one projector become occluded simultaneously, they are

placed as far apart as possible. In this manner, although the content remains

visible, partial shadows appear when the light from only one projector is occluded.

To compensate, shadows are detected on the display surface, and the brightness of

all projectors in that region is increased, as described in the following paragraph.

The design of this first shadow removal system uses a camera that is ori-

ented to capture images from the display surface. Since the system requires an

unoccluded view, the camera is placed as close as possible to the surface, ide-

ally attached to the ceiling. The user can choose the area of display by selecting

the four desired corners in the camera image, or the system can automatically

detect brighter areas in the image and construct a quadrilateral that it will use

as display area. Homographies between the camera and the projectors are com-

puted from this data. Image rectification is accomplished using homographies in

a manner similar to the method we use in our work, first described by Raskar et

al . [30, 31, 32]. To initialize the shadow elimination, the system takes a few frames

of the unoccluded display surface and creates a statistical model for each pixel

in a manner similar to background subtraction techniques. After that all images

from the cameras are compared pixel-by-pixel to the model. To compensate for

deviations, one alpha mask1 shared by all projectors is generated. With this mask,

we can increase the intensity of pixels that require more light, and dim pixels from

1 An alpha mask is an image where the value of each pixel indicates the desired
brightness.
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previously shadowed areas that are now too bright. This simple procedure does

not need any illumination model and works correctly for a static image, but not for

dynamic video, and it also requires at least three frames to converge to the correct

brightness. Moreover, the method actually increases illumination on occluding

objects, which is unpleasant for users who are facing the projectors.

In parallel, Jaynes et al . [23] developed a similar approach, but instead of

assuming a static image, the system uses a basic radiometric model to predict

the expected colors in the camera view. This way one can change the image be-

ing projected without needing to reinitialize the system after each update. The

model consists of a color transfer function that the system estimates through an

automated calibration process that iteratively projects different color intensities

uniformly across the display surface, and for each intensity measures the response

of the camera, where the three color channels (red, green, and blue) are calibrated

separately. Similarly to the previous approach, this method also increases illu-

mination on occluding objects and requires three or four frames to converge to

the correct brightness. In later work [22], the authors note that this still does not

permit operation at 60 Hz, the threshold at which human perception of flickering is

significantly reduced [15]. One of our goals is to achieve reasonable performance at

such frame rates, without increasing illumination on occluding objects.

Cham et al . [6] proposed a method to prevent such unnecessary and distract-

ing illumination of occluding objects. This employs a probing technique involving

more than one alpha mask, one for each projector. When the system detects re-

duced pixel brightness in the camera image, it appropriately modulates the pixel
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intensity, one projector at a time. The projector that has no influence on the

intensity as seen by the camera is the occluded projector. This probing technique

runs continuously and iteratively, and takes on average five to seven frames before

converging. They also tested a binary approach where each pixel is either on or off.

Although they describe this switching process as “extremely fast”, it actually runs

at three frames per second. Flagg et al . [14] optimized this system and obtained

a performance of eight frames per second, but this is still insufficient for smooth

video playback.

Jaynes et al . [22] continued perfecting their method to achieve better results

for dynamic interactive applications, where shadow removal needs to work with

a constantly changing display. They enhanced their initial work [23] by adding

the probing technique of Cham et al . [6]. Also, they added support for more than

one camera, in case one or more cameras become occluded and cannot see the

display surface anymore. In addition, they proposed a technique that computes the

desirability of a projector for a given region of the display surface. The desirability

is proportional to the resolution the projector can achieve in this region, taking

into account warping induced by projecting at an angle. The system then attempts

to fill regions of the display surface with the more desirable projectors, and only

uses less desirable ones in case of occlusion. Again, the system can either work

on individual pixels or approximate the shadow removal to rectangular regions,

boosting the processing performance from two to nine frames per second. However,

the method still requires three or four frames to converge to the correct brightness
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adjustment. Hilario and Cooperstock [17, 18] developed similar techniques as well

with comparable results.

Despite all the research done on shadow detection, by design, these methods

can only remove shadows after they appear, which is their most important limita-

tion. Moreover, it is not always possible to remove shadows after a single frame.

Convergence can often only be attained after a few frames. This is because the

system needs to make assumptions about whether or not a projector is occluded

and then needs to test these assumptions on the display surface, producing a

feedback loop between the projectors and the cameras. If the system incorrectly

switches pixels with the full intensity after only one frame, visually distracting

echo may result. Obviously, this comparison operation between the cameras and

the projectors must also be time synchronized. For this reason, implementing such

methods becomes more complex in the case of video at high frame rates since to

compare correctly we need to know the precise delay incurred in the projectors,

in the cameras, and in processing. An additional constraint is that together the

cameras need an unoccluded view of the entire display surface, or the system

cannot function properly.

1.3.2 Occlusion Detection Methods

An alternative approach to shadow detection is occlusion detection, where

instead of analyzing the display surface to detect shadowed regions, the system

detects the occlusions themselves in front of the projectors. Much research has

gone into detecting occlusion in front of color camera and projector pairs to

localize hands for human-computer interaction applications, but none of these
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techniques has been applied to shadow removal. Licsar and Sziranyi [25] use a

method that needs a geometric and color calibration similar to the ones used by

shadow detection methods [17, 18, 22, 23], and as such would produce comparable

results as these if applied to shadow removal. Pinhanez et al . [27] use frame

differencing, taking the difference between two consecutive camera frames, but

this can only detect moving objects. It would not work for people standing still.

Takao et al . [41] limits the interaction outside the projection area, such that

projector occlusion or a shadow never occurs. Von Hardenberg [46] uses a running

average to adapt the model of the background, which is the display surface,

but this technique can only adapt to slowly changing content. In brief, none of

these methods using color cameras has the potential to offer adequate occlusion

detection required to remove shadows from a display surface with video running at

60 frames per second.

Another way of dealing with this problem using color cameras would be to use

imperceptible patterns that were first described by Raskar et al . [31] and further

enhanced by Cotting et al . [9]. With this method the projectors display patterns

to generate a texture, such as binary stripes typically used in structured light

approaches or coded tags typically used in augmented reality applications. The

cameras can then detect the regions with missing texture, which correspond to

where occlusion occurs. It is rendered imperceptible to the human eye [15] by

rapidly switching between complementary patterns at 60 Hz. Capturing them

however requires a synchronized camera. We believe that this approach could

effectively be applied to shadow removal, but no available publication describes
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such an application. In any case, the drawback is that we need cameras and

projectors that can be synchronized with one another, specialized hardware that

can be expensive.

Instead of color cameras, one can use infrared cameras, which are insensitive

to light emitted by projectors. The system by Sato et al . [33] uses a thermal

infrared camera to detect occlusions by hands. From the camera image, the

occlusions are directly and clearly visible with no further processing required,

although a drawback is the high cost of thermal cameras, typically an order of

magnitude more expensive than color or near infrared cameras.

Other methods use a near infrared camera mounted alongside each projec-

tor [13, 42] to detect the occlusion. Because these cameras do not see the projector

light, a simple background subtraction technique can be used to generate a pixel-

mask of the occlusions in front of each camera-projector pair. Since background

subtraction requires good contrast between the background (display surface) and

the foreground (people), infrared floodlights are used to illuminate the display

surface, while not illuminating the people. This method recovers occlusion masks

of high quality, which are directly used to generate alpha masks for the projectors.

Furthermore, Flagg et al . [13] perform much of their computation on Graphics

Processing Units (GPUs), which greatly improves processing speed and provides a

total latency of 53 ms. The system is fast enough to follow typical human gestures

they tested. The main drawback of this approach is the requirement of hardware

specifically for shadow removal purposes, which may include infrared floodlights,
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and for each projector, a near infrared camera and additional processing power

(GPUs).

Summet et al . also conducted usability experiments [35, 36] and a thorough

technical review [37] of all the shadow removal methods described in this section.

Their research shows that although users preferred back projection to front

projection with shadow removal, they still preferred front projection with shadow

removal over front projection without shadow removal. However, as explained

earlier in this section, rear projection requires more space, shadow detection

methods do not cope well with dynamic video projection, and occlusion detection

methods that work better all require the installation of hardware that can be

expensive or cumbersome. Therefore, this justifies our development of a new

method.

1.4 Object Tracking for Shadow Removal

As an alternative to the shadow detection and near infrared occlusion detec-

tion methods, we propose object tracking as the basis of our approach to shadow

removal [2]. We were attracted to object tracking because many applications

already use it, for example to change video or audio according to the position

of people, as envisioned by Cruz-Neira et al . [11, 12], to ensure that images are

rendered from the proper perspective [31] or to adjust 3D audio according to user

movement [50]. Using tracking for shadow removal thus leverages hardware and

technology that may already be in place, since our method can use data from

many typical object trackers, reducing the complexity and cost of installation.
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Also, tracking can take advantage of temporal information to predict the motion of

people as occluders.

Our current approach requires a manual calibration method for both the

cameras and projectors, an adequately reliable object tracker, and an algorithm

that combines this information to perform shadow removal. While calibration and

tracking are often inaccurate and imprecise, we show that good results can be

obtained from our system.

1.5 Research Overview

A high-level diagram of our system architecture appears in Figure 1–2.

Our work focuses on the Calibration, Object Tracking, Shadow Removal, and

Image Rectification modules. We did not address issues of color correction and

multi-focal projection. In the following chapters, we elaborate on our approach.

Chapter 2 first describes in detail the camera calibration procedure we

employed, and how we adapted it to projector calibration. To find the intrinsic

parameters of our cameras, we capture a checkerboard pattern from many different

angles, extracting the corners of the checkerboard, and performing, in accordance

with the theory of multiple view geometry, mathematical operations on the

locations of these extracted points to find the internal parameters or intrinsics

of the camera. For the projectors, since they cannot capture images, for the

duration of the calibration process, each projector is paired with a camera. To

find the intrinsics of the projector, images from the scene are captured by the

camera while a checkerboard pattern is displayed by the projector on another

checkerboard pattern printed on a board. We can then use a procedure almost

13
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Figure 1–2: Illustration of the flow of data in our system.

identical to the one used for the cameras. To find the extrinsics, the external

parameters corresponding to the orientations and positions in space of the cameras

and projectors, we devised a method that uses the display surface, and for which

we do not need to manipulate an object. With this method we can also recover

the planes of the display surface, the floor, the ceiling, the walls, and of other

flat surfaces, which we use as a 3D model of our environment for the following

modules.

Next, Chapter 3 describes how we adapted a camera-based object tracker

for our purposes. The main challenge we faced was to achieve reasonably reliable

tracking, despite the projection of dynamic video in the background, which can

easily be misinterpreted as moving people. To render the tracker insensitive
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to video projection, we decided to use two color cameras in concert with the

calibration data and geometry of the environment modeled as planes to generate

a disparity map. This provides the pixel correspondence between the images of

two cameras. Taking the difference of the two images using this disparity map

produces disparity contours for objects that are not part of our model, such as

people. Objects that are part of the model, such as the display surface, will not

appear in the disparity contours, despite the video projection, thus achieving our

goal. We can then use the disparity contours as input images to a blob tracker to

obtain tracking information of people in the scene.

Chapter 4 explains how we integrated these components to model shadows

and achieve shadow removal. The model represents tracked people in 3D space

as rectangles parallel to the display surface. Using the projector calibration

information, we can back-project the rectangles onto the display surface to

find regions on the display surface where shadows are occurring, according to

our model. Coverage masks are generated from this information, which are

then processed using the distance transform for intensity blending and finally

normalized. Before display, the masks undergo gamma correction and image

rectification in OpenGL.

Chapter 5 summarizes our experimental results. We achieved an accurate

calibration of the intrinsic parameters, although the extrinsic parameters recovered

by our simple method were not as accurate. This however did not affect the

qualitative results, since increasing by only 20% the dimensions of tracking

rectangles produced correct behavior in the case of static images. For dynamic
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video projections, the tracking method using disparity contours often failed due to

inconsistencies between the color responses of the two cameras, but the results are

nevertheless promising.

Chapter 6 concludes with a discussion of limitations and future work. Cur-

rently, the tracking module cannot cope well with video projection, the manual

calibration process is tedious, and the shadow removal method only works with

flat display surfaces. We provide design ideas for a better method that has a more

user friendly calibration process and that works with arbitrarily shaped display

surfaces. Nevertheless, the current framework has the advantage of offering more

opportunities for further development. For example, knowing the position in space

of display surfaces, the system can automatically place corresponding cameras in a

virtual world to provide to a user the correct perspective.
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CHAPTER 2
Camera and Projector Calibration

In the first section of this chapter, we describe the basics in multiple view

geometry that are required to understand the camera calibration procedure.

Hartley and Zisserman [16] provides a more exhaustive explanation of these

concepts. The camera calibration requires many images of a checkerboard pattern

captured from different orientations, whose corners are then extracted, and used

eventually to find the intrinsics or internal parameters of the camera. We can

think of the projector as the dual of the camera, so we can calibrate it using the

same theory. However, since it cannot capture images, it needs to be calibrated

indirectly through images captured by a camera viewing a projected checkerboard

pattern. Finally, since our goal is to build a 3D model of the environment or room

where video projection takes place, we need to find the extrinsics, which are the

orientations and positions in space of the cameras and projectors. We also need to

find the planes of the display surface, of the floor, and of any other flat surfaces

required for the 3D model.

2.1 Fundamentals in 3D Geometry

Before delving further into calibration procedures, we first provide an in-

troduction to multiple view geometry in 3D. The most fundamental concept, a

point, can be represented in 3D space by a column vector with three components

X = [ x y z ]T, also know as Cartesian coordinates. Since it has three parameters

17



x, y, and z, we say that this entity has three degrees of freedom. However, this

representation does not allow easy computation of projective transformations

using linear algebra and matrix notation, as described later in this section. If

we augment the 3-vector with one more component w =/ 0, the vector becomes

X = [ x′ y′ z′ w ]T where x′ = wx, y′ = wy, z′ = wz, and we can then represent

any projective transformations using matrices. This 4-vector representation is

known as homogeneous coordinates. The component w is the nonzero scale of the

vector, which is arbitrary, so the vector still has three degrees of freedom, not four.

When a vector is normalized such that w = 1, the first three components of the

homogeneous vector correspond to the Cartesian coordinates of the 3D point in

Euclidean space.

Next, a 3D point X = [ x y z ]T lies on a plane if and only if the following

equation is satisfied: ax + by + cz + d = 0 where the constants a, b, c, and d

represent the plane. This equation can be extended in the case of homogeneous

coordinates by multiplying it by the scale w: ax′ + by′ + cz′ + dw = 0. Given the

row vector p = [ a b c d ] and a point X expressed in homogeneous coordinates,

we can also represent the equation of a plane more compactly using linear algebra:

pX = 0. Note that n = [ a b c ]T is a normal vector of the plane, a vector

perpendicular to it. Also, with homogeneous coordinates, it is possible to have

points with components w = 0 if at least one of the other components is nonzero.

Such a vector indicates a point at infinity and lies on the plane at infinity. Since we

only require w = 0 for such points, we must have a = b = c = 0 and d =/ 0, which

is typically represented by the plane vector p∞ = [ 0 0 0 1 ]. A point at infinity is
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also a directional vector. Since it is also only defined up to scale, any vector in the

same direction also represents the same point at infinity. Also, when added to a

normal finite point, the scale of the resulting vector is the same as the initial finite

point, and the operation is equivalent to a simple vector addition in Cartesian

space, e.g .:

[ x1 y1 z1 w ]T + [ x2 y2 z2 0 ]T = [ x1 + x2 y1 + y2 z1 + z2 w ]T. (2.1)

In the next section, we detail some important entities that live on planes and

how they can be operated upon.

2.1.1 Geometry on Planes

On a plane, we can define lines, conics, and projective transformations. Let

our plane be where z = 0. Since we can adjust the world coordinate frame such

that every plane lies at z = 0, the following discussion is valid for every plane in

3D space, but we will denote them collectively as the scene plane for clarity. We

can thus drop the z component from the notation when dealing with 2D entities in

3D space.

A line on the scene plane is defined similarly to a plane in 3D space. A

homogeneous 2D point x = [ x′ y′ w ]T lies on the line l = [ a b d ] if and only if

lx = 0. The scene plane also has a line at infinity l∞ = [ 0 0 1 ]. In other words,

since z = 0, the line lies on the scene plane, and since for all points on the line we

have w = 0, it lies on the plane at infinity as well. This shows that any plane p

intersects the plane at infinity at a line, and that this line is the line at infinity of

the plane p.
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We can also define conics on the scene plane. A point x = [ x y ]T lies on a

conic if and only if the following equation is satisfied: ax2+bxy+cy2+dx+ey+f =

0. The non-degenerate conics are the circle, the ellipse, the parabola, and the

hyperbola. Again, we can augment the equation with homogeneous coordinates:

ax′2 + bx′y′ + cy′2 + dwx′ + ewy′ + fw2 = 0 (2.2)

or more simply reformulated using matrix notation:

xTCx = xT





a b/2 d/2

b/2 c e/2

d/2 e/2 f




x = 0 (2.3)

Since this equation makes use of homogeneous coordinates, the conic matrix C is a

homogeneous matrix and is only defined up to scale. Therefore, it actually has five

degrees of freedom, not six.

A point on the scene plane can also undergo linear transformation or distor-

tion via a homography, which is also known as a projective transformation. This

transformation can be represented by an invertible 3 × 3 matrix H, which can

transform a homogeneous point x into x′ = Hx. Since this operation works on

homogeneous coordinates, the matrix H is again a homogeneous matrix. Conse-

quently, it only has eight degrees of freedom, not nine. Lines and conics can also

be transformed as follows:

l′ = lH−1, (2.4)

C′ = H−T C H−1. (2.5)
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Lines and conics are transformed in this manner so that if x lies on l and C, then

x′ lies on l′ and C′, in other words:

l′x′ = lH−1Hx = lx = 0, (2.6)

x′T C′ x′ = xTHTH−TC H−1Hx = xTCx = 0. (2.7)

In addition to operations solely limited to a 2D world, it is possible to project

points from a 3D space onto a plane, the image plane, as detailed next.

2.1.2 Projection onto the Image Plane

Using homogeneous coordinates, we can denote the projection of a 3D point X

onto the 2D image plane as:

x = PX, (2.8)

where P is a 3 × 4 projection matrix, and x a 2D homogeneous vector. Since we

are working with homogeneous coordinates, P is again a homogeneous matrix that

is defined only up to scale. Thus it only has eleven degrees of freedom, not twelve.

We can decompose the matrix in the following way:

P3×4 = M3×3[I3×3|−C] = K3×3R3×3[I3×3|−C] = λ





fx s x0

0 fy y0

0 0 1




R[ I | −C ] (2.9)

where λ is an arbitrary scaling factor, K is the upper triangular camera ma-

trix (composed of the intrinsics: the focal length [ fx fy ]T, the principal point

[ x0 y0 ]T and the skew factor s), R is the orthogonal rotation matrix, and C is

the camera center (translation). The decomposition of M into KR is known as the
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Figure 2–1: Illustration of the pinhole camera model. The line joining the camera
center C to the 3D point X intersects the image plane at the 2D point x, which we
call the projection of point X. In this ideal case, the focal length fx = fy = f and
the skew s = 0. This simple illustration also assumes a camera center at the origin
with no rotation.

RQ factorization [16], a close relative to the more commonly known QR factor-

ization [28], widely known for its existence and uniqueness, when M has full rank.

The matrix K has five parameters up to an arbitrary scale λ, and there are three

rotation axes and three translation components, so the projection has a total of

eleven degrees of freedom as previously noted.

This projection is commonly used as model for the pinhole camera, as

illustrated in Figure 2–1. The projection accounts for all linear distortions or

transformations that take place when a pinhole camera projects an image. Most

cameras using lenses follow this model, but also introduce non-linear radial and

tangential distortions. These have to be taken into account during calibration, as

we describe later in this chapter. Before doing so, we explain the projection of the

scene plane using the simple linear model.
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In the general case, points lying on the scene plane in 3D space will fill

the image plane of the camera, undergoing a projective transformation. Let

us consider once more the scene plane at z = 0. We can then determine the

correspondence between 2D points x on the image plane and 3D points X on the

scene plane as follows:

x = PX = [ p1 p2 p3 p4 ][ x y 0 1 ]T = [ p1 p2 p4 ][ x y 1 ]T (2.10)

where the matrix [ p1 p2 p4 ] is simply a homography, or a projective transfor-

mation. Moreover, this homography contains information about intrinsics K, the

rotation R and the camera center C:

x = PX = KR[ I | −C ][ x y 0 1 ]T = KR[ e1 e2 −Ci ][ x y 1 ]T. (2.11)

At infinity, the resulting homography is invariant to translation. Points lying on

the plane at infinity X∞ = [ x y z 0 ] are projected as

x = PX∞ = KR[ I | −C ][ x y z 0 ]T = KR[ x y z ]T (2.12)

such that the homography H = KR, which is therefore invariant to translation.

We can intuitively understand this by looking at the stars at night and noting that

they do not move when we do.

2.1.3 Back-Projection from the Image Plane

In addition to projecting onto the image plane, it is also possible to back-

project a point x from the image plane and find a 3D point X, which projects to
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this point x, in other words

X = Bx (2.13)

where B is the back-projection matrix such that x = PX. We also want the point

X to lie on a plane p, as described next.

A point

D =




M−1

0T



x (2.14)

is a 3D point at infinity (w = 0) that correctly projects to the point x on the

image plane since

PD = [ M | p4 ]




M−1

0T



x = x (2.15)

where M is as defined in Equation 2.9.

As described previously by Equation 2.1, a point at infinity is also a direc-

tional vector, which we can use to travel along a line. The line that passes through

the point x on the image plane and the 3D point X also goes through the center

of the camera C, as shown in Figure 2–1, so by using D we can back-project the

point x into

X = C + tD. (2.16)

We also want the point X to lie on the plane p, such that pX = 0 or by substi-

tution p(C + tD) = 0. By isolating t and resubstituting in Equation 2.16, we

obtain

X = C−
(

pC

pD

)
D , (2.17)

24



which can be rearranged to obtain Equation 2.13 where

B = [ Cp− pC I4x4 ]




M−1

0T



 . (2.18)

Using this fundamental knowledge of geometry, the next section introduces

concepts required to understand the calibration procedure for cameras and

projectors explained later in this chapter.

2.2 Calibration from Planes

The calibration consists of finding the intrinsic and extrinsic parameters of

both the cameras and the projectors. These parameters are required to build the

3D model of the room, which is then needed to find the location and size of people

in 3D and to model their shadows occurring on the display surface. In this section,

we describe how to calibrate cameras and projectors using only the scene plane.

2.2.1 Intrinsic Parameters

The intrinsic parameters that we want to recover for the cameras include their

matrices K and any nonlinear distortion parameters. The calibration method we

describe here was first developed by Zhang [51] and later implemented and refined

by Bouguet [5]. This is currently a popular calibration method as can be seen from

the large number of references to the article in the literature. It does not require

complex hardware installations as previous approaches. Before describing the steps

involved in this method, which are corner extraction, estimation of homographies,

and intrinsic and extrinsic parameters, we first explain two special geometric

entities: the absolute conic and the circular points.
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2.2.2 A Special Conic: The Absolute Conic

The absolute conic Ω∞ is defined with the conic matrix C = I, the identity

matrix, for points that lie on the plane at infinity p∞ = [ 0 0 0 1 ]. In other words,

a point X = [ x y z w ] lies on the absolute conic if and only if

x2 + y2 + z2 = 0, (2.19)

w = 0. (2.20)

This conic contains no real points, only imaginary ones. However, it is useful for

calibration purposes. We see from Equation 2.12 that the projection of points from

the plane at infinity to the image plane induces the homography H = KR. Using

Equations 2.5 and 2.12 to project a conic from the plane at infinity, we find that

the absolute conic appears on the image plane of a camera as

ω = H−TΩ∞H−1 = H−TI H−1 = (KR)−T(KR)−1 = K−TR−TR−1K−1

ω = (KKT)−1. (2.21)

We can then decompose ω−1 by Cholesky factorization [16, 28] and extract K,

which is the camera matrix that contains the intrinsics. Note that ω is invariant to

rotation and translation as the matrix R is factored out during the projection, and

a projection from the plane at infinity is invariant to translation. We can use this

fact to our advantage by capturing the absolute conic from many different angles

and positions, whose image will always be ω for a given camera with intrinsics K.

Unfortunately, since the absolute conic is imaginary, we cannot capture

it using a real camera. Using real points, we can however find constraints and
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transfer them onto the image of the absolute conic, using what are called the

circular points.

2.2.3 The Circular Points

The circular points are the complex conjugate imaginary points at infinity

c+ =





1

i

0




, c− =





1

−i

0




(2.22)

where the last coordinate is w = 0, but could also be z = 0 when considering the

scene plane. They are special points since they lie both on the line at infinity of

the scene plane:

l∞c+ = [ 0 0 1 ][ 1 i 0 ]T = 0, (2.23)

l∞c− = [ 0 0 1 ][ 1 −i 0 ]T = 0, (2.24)

as well as on the absolute conic on the plane at infinity:

c+
TΩ∞c+ = [ 1 i 0 ] I [1 i 0 ]T = 1− 1 = 0, (2.25)

c−
TΩ∞c− = [ 1 −i 0 ] I [1 −i 0 ]T = 1− 1 = 0. (2.26)

Their name, “circular points”, comes from the fact that they lie on all circles of

the scene plane. To show this, a point lies on a circle if it satisfies Equation 2.2

with a = c and b = 0, equating to ax2 + ay2 + dwx + ewy + fw2 = 0. For points

at infinity where w = 0, this reduces to ax2 + ay2 = 0, and for the circular points

a− a = 0.
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We can also transform these points by homography just as any other points:

c′+ = Hc+, c′− = Hc−. (2.27)

If we let this homography be the projection onto the camera image plane according

to Equation 2.12, the two imaged points lie on the image of the absolute conic ω:

(Hc±)Tω(Hc±) = c±
THTH−TΩ∞H−1Hc± = c±

TΩ∞c± = 0 (2.28)

which is true as shown above.

As Equation 2.3 tells us, knowing five points on ω, the information we are

seeking about our camera can be recovered completely. According to the discussion

above, thanks to the circular points, we can do this by using three homographies

H induced by the scene plane in the real world. Before we can find those however,

we must first be able to measure or extract real points from the scene plane as

observed by the camera. This brings us to the problem of finding points on a real

plane using corner extraction.

2.2.4 Corner Extraction

We place a calibration board containing a typical checkerboard pattern as

shown in Figure 2–2(a) onto the scene plane to find point correspondences between

it and the image plane of the camera. The corners of the pattern are the points xi

on the scene plane. They are known in advance and decided upon printing of the

board. These corners are imaged by the camera on the image plane as shown in

Figure 2–2(b), points that we denote as x′i. To extract these imaged points with

sub-pixel precision, we use the following procedure.
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(a) Calibration pattern. (b) Sample image from camera.

Figure 2–2: The calibration pattern that we use, and a sample image from the
camera when holding the calibration board in front.

In the ideal case as depicted in Figure 2–3, a center pixel x′i is also a corner

pixel. For all pixels x′j in the neighborhood of this x′i we either have that their

gradients ∇x′
j = 0 or that ∇x′

j is perpendicular to the vector x′i − x′j. Both

constraints can be expressed by the equation

∇T
x′

j
(x′i − x′j) = 0. (2.29)

Due to noise and other sources of error, this will never be exactly true,

but under the assumption of Gaussian noise, we can nonetheless use this as a

constraint to find the maximum likelihood estimate for a given x′i. As a neighbor-

hood, we use a typical square window of 11 × 11 pixels centered at x′i. Using an

initial estimate provided by the user, the constraint imposed by the sum

∑

j∈window

∇T
x′

j
(x′i − x′j) = 0 (2.30)
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xi

xj

Figure 2–3: Ideal corner x′i at the center of the sample neighborhood window de-
picted with the blue frame. Only points on edges have gradients larger than 0 as
illustrated with the red arrows.

over all pixels x′j in the window can be reformulated using the gradient covariance

matrix Gj = ∇x′
j∇T

x′
j
:

∑

j

Gj(x
′
i − x′j) = 0,

(
∑

j

Gj)x
′
i − (

∑

j

Gjx
′
j) = 0, (2.31)

(
∑

j

Gj)x
′
i = (

∑

j

Gjx
′
j),

which can be seen as a linear system of the form Ax = b. Solving for x′i generates

a new estimate closer to the corner. The algorithm runs iteratively and stops

when the movement of the center no longer exceeds some threshold ε, typically

0.005 pixels. According to Bouguet [5], this procedure can extract corners with

an accuracy of up to 0.1 pixels, although no proof of convergence is provided.

With the two sets of points xi and x′i, we can then compute an estimate of the

homography induced by the scene plane.
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2.2.5 Homography Estimation

We can estimate the homography induced by the projection of the scene plane

onto the image plane of a camera using the direct linear transformation (DLT)

algorithm described in this section. This algorithm requires four or more point

correspondences between the two planes, which we find using the corner extraction

procedure described above.

Given a set of n 2D points xi on the scene plane where i = 1, ..., n and their

correspondences x′i on the image plane, we are looking for a homography H such

that

x′i = λiHxi (2.32)

for all i = 1, ..., n where λi are arbitrary scaling factors, since we are working with

homogeneous coordinates. We can factor out λi by working instead with the vector

cross product

x′i × Hxi = 0. (2.33)

Since the scale does not change the direction of Hxi, we still obtain 0 regardless of

its value. If we denote the homography H = [ h1 h2 h3 ]T by its row vectors, then

Hxi = [ h1xi h2xi h3xi ], (2.34)

and we can expand the vector cross product as

x′i × Hxi =





y′ih3xi − w′
ih2xi

w′
ih1xi − x′ih2xi

x′ih2xi − y′ih1xi




= 0. (2.35)
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This provides three equations equal to zero. We can rewrite them as a linear

system in the usual Ax = b form




−w′
ix

T
i y′ix

T
i

w′
ix

T
i −x′ix

T
i

−y′ix
T
i x′ix

T
i









hT
1

hT
2

hT
3




= 0. (2.36)

that we will denote as Ah = 0. A is a 3 × 9 matrix and h is a 9-vector com-

posed of components of the unknown matrix H. The component-to-component

correspondence between h and H becomes

h = [ h1 h2 h3 h4 h5 h6 h7 h8 h9 ]T, (2.37)

H =





h1 h2 h3

h4 h5 h6

h7 h8 h9




. (2.38)

Note that, the matrix A actually has rank two and not three, since for example we

can obtain, up to scale, the third row by adding xi times the first row to yi times

the second row.

Since the homography has eight degrees of freedom up to scale, we need four

or more points, whose equations can be stacked on the matrix A to solve for h

using any method that can solve a linear system of the form Ax = b. To obtain a

better estimate of the homography, we actually need more than 150 corners [39].

The system is thus over-determined, and because of noise, the matrix A will have a

rank larger than eight. We therefore solve in the linear least-squares sense [16, 28].
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The linear least-squares solution, however, minimizes the algebraic error

||Ah||/||h||, not the geometric error. What we actually want to minimize is the

geometric distance between the points extracted from the image and the points

from the scene plane, once transformed using H, or in other words (with properly

normalized vectors to avoid trivial solutions)

min
H

n∑

i=1

||x′i − Hxi|| , (2.39)

which provides the maximum likelihood estimate [16] under the assumption of

Gaussian noise. Although this seems to be a normal linear least-squares problem,

the scales of Hxi are unknown without knowledge of H, so it cannot be solved in

the usual manner.

To perform this refinement step known as bundle adjustment, we use gradient

descent [16, 28], which requires an initial estimate for H, obtained using the DLT

algorithm described above. Using such estimated homographies, it is now possible

to find the intrinsics of the camera.

2.2.6 Estimation of the Intrinsics

As demonstrated previously by Equation 2.21, to estimate the intrinsics K,

we simply need to find the image of the absolute conic ω = (KKT)−1, but because

the absolute conic is imaginary, it cannot be imaged in reality. However, since

we can find homographies between the scene plane and the image plane, we can

impose constraints on ω using the circular points via Equation 2.28. The circular

points c+ and c− of the scene plane lie on the absolute conic, and therefore their

images lie on the image of the absolute conic ω. Using a homography induced by
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the projection of the scene plane, estimated as described above, we can project the

circular points on the image plane and find two equations

(Hc+)Tω(Hc+) = 0, (Hc−)Tω(Hc−) = 0, (2.40)

which impose two constraints on the image of the absolute conic ω. By Equa-

tion 2.2, a conic has five degrees of freedom, and therefore requires five points to

be defined. Each image taken from a different configuration (position and angle)

provides two such points, so we require a minimum of three configurations and

their homographies. In practice, however, we use more than 10 images for best

precision [39].

For a given configuration with homography H, if we denote the images of the

circular points

Hc+ =





xc+

yc+

wc+




, Hc− =





xc−

yc−

wc−




, (2.41)

we can write the two constraints as a linear system in the usual Ax = b form, a

procedure similar to the one used for the estimation of a homography:



x2

c+ xc+yc+ y2
c+ xc+wc+ yc+wc+ w2

c+

x2
c− xc−yc− y2

c− xc−wc− yc−wc− w2
c−



 $ω = 0 (2.42)

that we will denote as A$ω = 0. A is a 2 × 6 matrix and $ω is a 6-vector composed

of components of the unknown image of the absolute conic ω. Note that each line

of the matrix A represents one point on the conic. The component-to-component
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correspondence between $ω and ω becomes

$ω = [ a b c d e f ]T, (2.43)

ω =





a b/2 d/2

b/2 c e/2

d/2 e/2 f




. (2.44)

We can then use the method described in the previous section, where we solved for

a homography, but here we want to solve for $ω which has five degrees of freedom

up to scale, not eight like a homography. Consequently, we need five or more

points, whose equations we write down in the matrix A and solve for $ω. For best

precision, we typically need more than 10 pairs of points [39], and because of

noise this renders the system over-determined. As before, we solve in the linear

least-squares sense, and the matrix K is finally recovered by applying the Cholesky

factorization [16, 28] to ω−1.

Again, the linear least-squares solution minimizes the algebraic error, but we

want to minimize the geometric error between points extracted from the image and

those from the scene plane, after projection onto the image plane.

Moreover, physical cameras and projectors use lenses that usually exhibit

nonlinear radial and tangential distortions. We model these using the typical

distortion function d([ xu yu ]T) =



xd

yd



 = (1+k1r
2 +k2r

4 +k3r
6 + ...)




xu

yu



+




2p1xuyu + p2(r2 + 2x2

u)

p2(r2 + 2x2
u) + 2p2xuyu



 (2.45)
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where [ xd yd ]T = K−1x′ are the normalized distorted coordinates for a point

x′ on the image plane, [ xu yu ]T are the normalized undistorted coordinates,

r2 = x2
u + y2

u, k1,2,... are the radial distortion coefficients, and p1,2 are the tangential

distortion coefficients. As is common practice [5, 51], we only use the first two

radial coefficients.

To minimize the geometric error as well as to take into account nonlinear

distortion, we perform bundle adjustment using gradient descent [16, 28]. By using

the projection model of Equation 2.11 and including the distortion function of

Equation 2.45, we minimize (with properly normalized vectors) as follows

min
K,R,C,k1,k2,p1,p2

m∑

j=1

n∑

i=1

|| x′ij −K d(Rj [ e1 e2 −Cj ] xi) || (2.46)

the reprojection error for the correspondences between n points xi on the scene

plane, where i = 1, ..., n, and their images x′ij taken from different configurations

j = 1, ...,m. We initially assume no nonlinear distortions (k1 = k2 = p1 = p2 = 0).

We use as initial estimate for K the matrix found by solving the linear system of

Equation 2.42. For R and C, we extract the appropriate elements from the matrix

of Equation 2.11. Further, we constrain the skew coefficient s of the matrix K to

0, as this provides better results. Note that for numerical stability, all coordinates

xi and x′ij are actually scaled down so their values belong to the range [−1, 1].

Resulting matrices are rescaled to fit the original range.

2.2.7 Finding the Intrinsics of a Projector

To find the intrinsic parameters of our cameras, we use the calibration

method described above, pioneered by Zhang [51] and refined and implemented
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by Bouguet [5]. For the projectors, we developed a method based on work done

by Raskar and Beardsley [29] and by Ashdown et al . [1]. Their methods involve

locating points projected onto a calibration board, using the homography between

it and its projection onto the image plane of a camera, as described in this section.

Ashdown et al . [1] use the red and blue channels of a color camera as filters

respectively for a calibration board composed of white and cyan squares and for

a projected pattern with blue and black squares. This way, one can use the same

surface for both a projected and a physical pattern. We opted to use this method,

as it maximizes the use of the sensor of a color camera. We tested cyan, magenta,

yellow, red, green, and blue colors under complementary projector light, and

confirmed that cyan provided the best precision. Since we do not employ mobile

projectors as Ashdown et al . [1], we calibrate a projector by holding our cyan

calibration board, a printed sheet attached to a foam board, at different angles

in front of the projector as depicted in Figure 2–4. We found that our projectors

were too powerful and emitted too much blue light in comparison to the ambient

red light of the room. However, rather than simply reducing the intensity of the

projector to fall within the dynamic range of the camera sensor, we took advantage

of the fact that projector light is typically more powerful than room lighting.

Therefore, we use the projector to light up the calibration board with red and

green light as well, resulting in a projected pattern with yellow and white squares.

This way, we are able to guarantee the ratio of blue pixel intensity to red pixel

intensity without relying on the environment or fine-tuning camera parameters.

Typical images are shown in Figure 2–4.
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Our Modified Camera 
Calibration Toolbox

Blue channel

Red channel

Projected pattern

Printed board

Camera image

Figure 2–4: For projector calibration, we hold the cyan calibration board in front
of the paired camera and the projector displaying the yellow pattern as shown at
left. Sample images produced by this procedure are shown at right. (The level of
the red channel is adjusted for better contrast.)

Next, the yellow projected pattern predetermines the m points x′pk on the

image plane of the projector, where k = 1, ...,m. Via the red and blue camera

images, we can find their corresponding physical location xp
k on the calibration

board, which is the data required for calibration. To do so, we first use the corner

extraction method, detailed in Section 2.2.4, on the red and blue channels to find

the sets of points xred
i and xblue

k . The xred
i are actually the camera images of the n

corners on the calibration board xi where i = 1, ..., n, which we previously denoted

simply as x′i ≡ xred
i , while the corners from the blue channel are the camera

images of the m points xp
k we are looking for.
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Therefore, using the procedure described in Section 2.2.5 on xred
i and xi

we can find the homography Hbc between the board and the image plane of the

camera, such that the following hold:

xi = λiHbcx
red
i , (2.47)

xp
k = λp

kHbcx
blue
k , (2.48)

for arbitrary scaling factors λi and λp
k.

We also have to take into account the known nonlinear distortion coefficients

of the camera and use the undistorted coordinates as described by the function of

Equation 2.45.

Finally, to calibrate a projector, we use the predetermined point images x′pk

and the points xp
k found using the steps described in this section. The rest of the

calibration procedure is identical to the one used for the cameras, described in the

previous section, substituting xi by xp
k, and x′i by x′pk.

We also pay attention to other important factors that can influence the

accuracy of the resulting calibration. Previous research [39] indicates that to

obtain near optimal results with the method of Zhang [51], the calibration board

should have more than 150 corners and the set of images should contain more

than 1500 corners, and for these reasons we do the following. We use at least

15 images for the calibration of each device. The calibration board used for the

cameras contains 18 × 14 squares of 15 mm (221 corners), the cyan calibration

board includes 19 × 14 squares of 50 mm (234 corners), and the projected pattern

is made of 16× 12 squares (165 corners). We hold the calibration boards at angles
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near 45◦ as recommended by Zhang [51]. Last, when calibrating a projector, we

install the camera on top of it so that the projected pattern image can use the

largest possible area of the camera sensor even when holding the board at different

angles.

2.2.8 Extrinsic Parameters

After obtaining the intrinsic parameters of the cameras and projectors,

we need to find the extrinsic parameters. As described earlier in Section 2.1.2,

the scene plane induces a homography between it and the image plane of a

projective device (camera or projector). Therefore, the scene plane also induces a

homography between the image planes of two projective devices. In the present

case, we use the flat display surface as the scene plane, as shown in Figure 2–5.

For each projector, we find the homography between it and the camera by first

projecting a known calibration pattern on the display surface. Again, we have n

predetermined points x′pi , where i = 1, ..., n in the image plane of the projector.

Then, we locate the corresponding points x′i in the image plane of the camera

using corner extraction, and we determine the homography by using the algorithm

described in Section 2.2.5. For two calibrated devices, an algorithm developed

by Triggs [44] can then decompose the homography into the rotation matrix and

translation vector separating the two devices, and also provides the equation of

the inducing plane. The algorithm actually returns two sets of values, only one

of which is true. In our current setup, the display surface remains the same for

at least two projectors, so the actual plane equation has to be the same for these
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Projected pattern

Display surface

Camera image

Projector−to−camera
homography

Position and orientation
of projector and camera
Plane of display surface
We assume the floor 
to be perpendicular

Figure 2–5: Overview of the method used to find the extrinsics of the cameras
and projectors, and the planes of the display surface and the floor. The projector
projects a checkerboard pattern on the wall, and with the corners extracted from
the camera view, we can find a homography induced by the display surface, which
we decompose to find the required information.

projectors. We can therefore easily resolve the ambiguity and retain the set of

values for which the plane equations are closest to one another.

Because of unavoidable errors in the intrinsic parameters and in corner

extraction, the plane equations are not exactly equal. Without a unique plane, we

cannot properly model the shadows and back-project them onto the display surface

from two or more devices. Furthermore, we do not want to lose the accurate

homographies between projectors (less than one camera pixel of error), since they

indicate how well the content displayed by the projectors can overlap. To satisfy

both goals, we devised the following procedure. First, we use the plane equation

pc found with the homography between two cameras. We chose to use this plane

since the calibration procedure provides more accurate intrinsic parameters for
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cameras than for projectors. Thus a plane found with cameras should be more

accurate than one found with a camera and a projector. Next, the idea is to find a

corrective homography H to remove the discrepancies between the predetermined

images x′pi and the projection of corresponding 3D points Xi from the display

surface pc onto the image plane of the projector, which should be equal, or in

other words:

x′pi = λiHPpXi (2.49)

where

Xi = Bcx
′
i (2.50)

where Pp is the projection matrix of the projector, x′i are the points extracted

from the camera image, and Bc is the back-projection matrix of the camera, as

described in Section 2.1.3, using as plane pc.

From this operation, H is the corrective homography we want to find to obtain

a corrected matrix P′p = HPp, which can project points Xi to x′pi as closely as

possible in the linear least-squares sense. We ignore the radial and tangential dis-

tortion coefficients of the projector found during calibration. This approximation

should be valid as the projectors do not exhibit noticeable distortion. Also, this

simple procedure as a whole does not attempt to minimize geometric errors in-

duced by changes to the projection matrix. However, assuming relatively accurate

calibration results, the correction by the homography H, and consequently the

errors, should be minimal.
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At this point, although we have all the parameters of the cameras, projectors

and display surface, the tracking module requires the equation of the floor plane

and any other planes needed to model the room. For our current setup, since no

other planes enter the field of view of the cameras, we only need the floor plan. To

obtain it, we let the user manually determine in a physical unit the edge vector

v in the camera image where the floor and the display surface meet. Assuming

they are at right angles, we find the normal of the floor nf by computing the cross-

product of the normal of the display surface nd and the edge vector v, or in other

words nf = nd × v. We also rescale all calibration parameters with the physical

length of the vector v. Once we have all this information, we can use it to track

the positions of people in the room, as described in the next chapter.
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CHAPTER 3
Tracking

Before we can perform shadow removal, our model requires 3D tracking

information about people in the scene. There are many tracking algorithm that

can be used to obtain this information, but we were motivated to use an approach

we could easily implement and that would be fast enough for interactive purposes.

We also wanted to test our system with a method that did not require the user

to wear sensors, tags or markers, and that could also work in an environment

filled with video projections. These are goals that can be attained using computer

vision, even though current methods are not entirely satisfactory. Rather than

focusing our efforts on developing a new tracking method or on implementing a

complex 3D tracking algorithm [49], we devised a simple method based on previous

research using computer vision [20, 38], which is sufficient for evaluation purposes

of the shadow removal process. The method involves computing a background

disparity map between two calibrated color cameras and then using the map on

images from the cameras to obtain disparity contours. An object tracker can then

use these images directly for tracking people in the scene.

3.1 Disparity Contours

Using images from two cameras we can generate disparity contours. These

have the property of being less sensitive to changes happening on the display

surface than normal unprocessed camera images. To compute disparity contours,
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we first need the calibration data of the cameras and the room (floor and display

surface) to build a background disparity map. This map can be seen as a function

x2
i = m(x1

i ) that maps points x1
i from the image plane of one camera into points

x2
i on the image plane of the second camera, where i = 1, ..., n. As described by

Ivanov et al . [20], with a pair of frames I1 and I2, and their disparity map, one can

compute a difference image

D(x1
i ) = |I1(x1

i )− I2(m(x1
i ))| (3.1)

for i = 1, ..., n. In theory, x1
i and m(x1

i ) should back-project to the same physical

point when no object is present in front of the cameras, thus producing a com-

pletely black difference image D regardless of changes in lighting conditions under

the assumption of Lambertian surfaces. However, when the disparity map does

not correspond to the current scene geometry, this procedure produces contour

images, referred to as disparity contours [38], which have an appearance similar to

the output of an edge detector. Although in theory it is possible to extract depth

information from those contours, the task has proven challenging [38], and we

instead use the information for 2D tracking only.

Before routing these images to a blob tracker [7], we erode the images with

a 3 × 3 square mask, and then resize them to half their width and height for

two reasons. First, since we are dealing with discrete pixels, there are always

registration errors of at least ±0.5 pixels even assuming a perfect disparity map.

Second, the tracker requires much processing power and its limited precision did

not warrant that we use full resolution.
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We then send the eroded and resized images to the blob tracker. In practice,

these images are not completely black when no object is present. There are

always some calibration errors as well as differences in intensity because of non-

Lambertian surfaces and inconsistencies between CCDs. As a consequence, we use

a second preprocessing stage where we chose the Mixture of Gaussian background

subtraction algorithm [24], which works best at minimizing the importance of the

various causes of errors. The remaining steps of the tracking algorithm remain

unmodified. The results are passed to a Kalman filter [48] that models the speed

of the targets to predict their future locations. We decided to have the filter

run two prediction steps, accounting for the delays in the disparity contour and

tracker modules as well as in the shadow removal and image rectification modules,

assuming the two delays are close to each other. In this manner, we obtained an

object tracker less sensitive to changes on the display surface, as we can see in

Figure 3–1 where the image on the wall hardly shows up in the disparty contours.

3.2 3D Tracking

Although the low complexity of this tracking method is a desirable feature,

it provides only 2D information and does not manage occlusion well. Solutions to

the latter problem are beyond the scope of this work, but a possible workaround

could be to install the cameras on the ceiling. However, with a large field of view

and multiple people, occlusions are more likely to be observed, which would create

problems for the tracker. To address the limitations of the 2D tracker, we estimate

3D information as follows.
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(a) Camera image. (b) Disparity contours and tracking.

Figure 3–1: Sample camera image and the corresponding disparity contour image
with tracking information. (The level of the disparity contours is adjusted to easily
see details of low brightness.)

As described in Section 2.1.3, we can back-project a point x′ corresponding to

the feet of a person in the image plane of the camera onto a point X on the floor

plane pfloor = [ a b c d ]. We can then approximate the height of people, assuming

they stand in the direction of the normal of the floor (i.e. vertically). Consider a

plane ptop = [ a b c e ] parallel to the floor right above a person. It consequently

has the same normal n = [ a b c ]T as the floor plane pfloor. Therefore, the

distance we are interested in is the height h = d − e, after normalization. The

back-projection matrix B in Equation 2.18 has rank three, so it can solve for

three unknowns, but we only have two unknowns: the height h and the scale of

the resulting X, so the system is overdetermined. We could have found the least-

squares solution to minimize errors with x′ = [ u v 1 ]T, but under the assumption

that the up vector of the camera is in the general direction of the normal, simply
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dropping the u component and using only the v component should produce

acceptable results. To find the width of the person, we simply back-project to the

floor the two bottom points of the bounding box of the 2D tracking information,

and calculate their difference.

Similarly in 3D, we decided to model people as flat rectangles parallel to

the display surface, using as height and width the values found by the procedure

described in the previous paragraph. For our current setup, these simplifying

assumptions yield acceptable results, which we use as input to the shadow removal

module as described in the next chapter.
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CHAPTER 4
Shadow Removal

The shadow removal module uses the calibration and tracking information

as found using the methods described in Chapters 2 and 3. Figure 4–1 shows a

rendered image of the model of our room, as described by calibration and tracking

data. This model contains two cameras, two projectors, a tracked person, the floor,

the display surface, as well as modeled shadows rendered over it in the color of the

occluded projectors. To compute these shadows, the system simply back-projects

the tracked people that are represented by rectangles onto the display surface, as

described previously with Equation 2.13.

For a given projector, we can understand these shadowed regions as a coverage

mask, which is an image where white pixels indicate the absence of a shadow

according to the model, and black pixels, the presence of a shadow. The system

uses these coverage masks, one for each projector, as the basis for the rest of

the shadow removal process. The following processing stages include intensity

blending, normalization, and image rectification. Intensity blending smooths

transitions between projectors since their properties differ from one to the next.

Then, we perform normalization, which assumes uniform projection intensity

within a single projector. Even though this is not actually the case with typical

projectors, this produces acceptable results. Under this assumption, normalization

ensures that the intensity for any given region on the display surface remains
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Projectors

Cameras

Person

Shadows

Figure 4–1: Rendered image of the 3D model of the room with cameras, projec-
tors and a tracked person modeled as a rectangle, where the floor is in dark gray,
the wall, in black, and its chosen display surface in white. The lines on the wall
denote regions that cameras can see and that projectors can cover, drawn in their
corresponding colors.

constant, although color calibration would be necessary to obtain optimum results.

Finally, to account for projector distortion (linear keystone, and non-linear radial

and tangential distortions) image rectification pre-warps the display content

and the masks to obtain the desired rectified result on the display surface. We

implemented this operation in OpenGL to execute it quickly on graphics hardware.

4.1 Projector Coverage

Shadow removal works by first creating a coverage mask image for each of

the n projectors. A mask defines a portion of the display surface where images

are to be displayed, with the shadow regions removed. For the sake of clarity, we

use [0, 1] as the range of pixel values for discussion in this section, although our
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(a) Projector 1. (b) Projector 2.

Figure 4–2: Sample coverage images generated for the model of Figure 4–1.

implementation scales the results appropriately for use with 8-bit grayscale images.

A pixel with a value of 0 means that it is off, and 1, that it needs to be fully lit by

the projector corresponding to the mask.

First, the algorithm sets all the pixels of the mask images to 0. Then using

the calibration information, it sets to 1 the pixels inside the quadrilateral region

that is coverable by the projector. At this point, the images contain only informa-

tion about which area of the display surface any particular projector can cover.

Then, we need to localize shadows using tracking and calibration information. We

can model shadows similarly to how the operation is done in computer graphics.

For each projector, the algorithm back-projects the vertices of the rectangle onto

the display surface as described previously in Section 2.1.3, and fills in the affected

regions of the mask images with zero-valued pixels, generating masks such as those

shown in Figure 4–2.

Next, we want to normalize each pixel so that the sum of all pixels in the

same position from all masks Mj does not exceed 1, as described by the following
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(a) Projector 1. (b) Projector 2.

Figure 4–3: Sample result of normalization for coverage images of Figure 4–2.

equation:

M̂j(u, v) =






0 if
∑n

k=1 Mk(u, v) = 0

Mj(u,v)Pn
k=1 Mk(u,v) otherwise

(4.1)

for j = 1, ..., n where Mj is the mask image before normalization, and M̂j after, for

all pixels (u, v). We show a sample result of normalization in Figure 4–3.

Note that if an occluder stands too close to the display surface, this algorithm

cannot remove the shadow completely, and pixels in problematic portions would be

given a value of 0 in all masks. In this case, instead of setting all such pixels to 0,

the algorithm actually finds the first projector that can cover this area in a non-

occluded situation, and sets the pixels to 1 in the corresponding mask. This way,

any small portion that is not actually occluded is still displayed. Also, projectors

contribute equally to as much of the display as possible. This maximizes the

likelihood that in the event of a failure of shadow removal, the displayed content

will at least remain visible, even if reduced in intensity.

4.2 Intensity Blending

Although normalization alone would be sufficient with ideal projectors, in

practice it is not. Manufacturing limitations result in projectors often having
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different color emission properties. Projection angle also affects the quality and

consistency of multi-projector displays. As seen in Figure 4–3, the masks have

sharp edges at the coverage limit, and simply projecting them at this point would

make these edges stand out to the human eye. To reduce this distracting effect, we

added a smoothing stage that softens the transition between different projectors.

We perform intensity blending as first described by Raskar et al . [32] to smooth

out these edges, without changing the overall intensity of the projection.

We first apply a distance transform on the coverage image of each projector.

An approximation of the true distance transform can be computed efficiently in

O(n) time [4], where n is the number of pixels. The distance image produced for

one projector indicates how far away each pixel is from an edge of its coverable

region. We then normalize these results with a chosen maximum pixel value

dmax, equal to, for example, 50, which indicates within how many pixels we want

blending between multiple projectors to take place. Denoting Md
j the distance

transform of coverage image Mj, this can be formulated mathematically for all

pixels (u, v) as

M̄d
j (u, v) =






dmax if Md
j (u, v) > dmax

Md
j (u, v) otherwise

(4.2)

M̂d
j (u, v) =






0 if
∑n

k=1 M̄d
k(u, v) = 0

M̄d
j (u,v)

Pn
k=1 M̄d

k(u,v)
otherwise

(4.3)
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dxr xb

Figure 4–4: The blue region on the left and the red region on the right repre-
sents two projections, with their overlapping region of length d. The border of the
“blue” projector is at xb and the one for the “red” projector is at xr.

where M̂d
j is the final blended and normalized mask image for projector j. Normal-

ization ensures that the overall intensity remains constant over the whole display

surface.

To see that this operation actually smooths the transition regions, first

consider the limits of Figure 4–4. A pixel just outside the display region of one

projector, such as the “blue” projector at xb, receives zero illumination from

it, but if another (e.g ., “red”) projector covers this pixel, it may receive full

illumination. The same reasoning applies at the other end, such as at xr, at

the display limit of the “red” projector. Next, the value of the distance image

decreases by one for each pixel closer to the limit, such that the relation between

the pixel value and the distance is linear. Thus, applying the distance transform

to these overlapping regions results in a linear smoothing effect. Similar reasoning

using unit hyperspheres holds for higher dimensions.

In practice, this method produces visually pleasing smooth transitions for an

arbitrary number of projectors [32], shadows not affecting in any way the definition

of the problem. Figure 4–5 shows a sample result of blending.
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(a) Projector 1. (b) Projector 2.

Figure 4–5: Sample result of intensity blending via distance transform and normal-
ization for coverage images of Figure 4–2.

4.3 Image and Mask Projection

The masks can then be used to modulate the brightness of the projector

pixels. However, this linear representation of intensity is not physically reproduced

by commodity projectors. They usually follow a power law of 2.2 [19]. To com-

pensate, we filter the masks using a function that performs a gamma correction of
1

2.2 = 0.45, i.e.: M̂′(u, v) = M̂(u, v)0.45 for all pixels (u, v). Next, we need to rectify

the images so that they appear geometrically correct on the display surface. Note

that from this point on, the processing required for a projector is independent

of all others, such that the following operations can be executed in parallel on

multiple computers.

4.3.1 Image Rectification

At this point, we have a set of masks and an image as display content, but

they represent what should appear on the display surface, not what should be sent

to the projectors. If we consider Figure 4–6(a) as an image or mask to display, we

first normalize the image dimensions such that they correspond to the ones of the

display surface, Figure 4–6(c). Then, we essentially want a method that allows

us to keep this identity relationship. We know from calibration the homography
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(a) Image to display (b) Image plane of projector 

H H

(c) Display surface

−1

Figure 4–6: The transformations an image or a mask has to go through before
appearing on the display surface. Note that the blue image at (c) has the same
dimensions and shape as (a).

H−1 that the projector induces by placing pixels onto the display surface, which

is the inverse of a projective transform H that a dual camera would use to image

points from the surface. Consequently, we would like to find and apply the inverse

(H−1)−1 = H before sending an image to the projector such that H−1H = I. As

seen previously in Section 2.1.3, we can easily find the projector corners on the

plane of the display surface using back-projection. We also know the dimensions of

the image plane of the projector, and thus its four corners. This produces a four

point correspondence which we use to find the homography H using to the DLT

algorithm of Section 2.2.5. One can then use this homography to pre-warp images.

For efficiency, we implemented image transformation using OpenGL as described

next.

4.3.2 Image Transformation with OpenGL

The usual way to apply an arbitrary transformation to an image is by first

computing an inverse mapping function that takes coordinates x′ and transforms
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them back into the corresponding coordinates x in the source image:

x = m(x′). (4.4)

Programmatically, this function is optimally implemented using a look-up table.

With this function or table, to fill the transformed image, we simply have to loop

over all of its pixels, and use the mapping function to locate the appropriate values

from the source image. The function could also return a weighted combination of

source pixels to consider, which makes it possible to implement optimized versions

of other interpolation methods.

However, since the mapping works on a pixel-by-pixel basis, it can be slow.

There exists a more efficient method using OpenGL and a Graphics Processing

Unit (GPU) [6, 41, 43]. OpenGL and GPUs were built to handle large amounts of

graphics data effectively. We can feed an image, called a texture, to the graphics

hardware through OpenGL and instruct it to perform transformations.

Instead of pixels, the basic processing primitive of OpenGL and of graphics

hardware is triangles. A transformation is therefore applied to a whole triangle

at a time, not a single pixel, which dramatically increases performance. How-

ever, the range of possible geometric transformations is limited to linear ones

(homographies). We can use two triangles to warp a rectangle, the shape we are

most interested in, but as shown in Figure 4–7, the resulting transformation does

not equal the desired one. In Figure 4–7(c), we can clearly see the boundaries of

the two triangles where the bottom line and the horizon line at the top are not

straight.
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(a) Sample image. (b) Desired transformation. (c) With two triangles.

Figure 4–7: Sample image and its desired transformation using OpenGL. Only two
triangles do not provide satisfactory results.

To overcome this limitation, we can divide the image plane of the projector

into a triangular mesh and instruct OpenGL to transform each small triangle

piece by piece from the texture. As shown in Figure 4–8, we apply the inverse

transformation H−1 to the vertices of the triangles in the image plane. In other

words, to each vertex v, we assign the coordinates H−1v in texture space. Then,

when we send a new texture, OpenGL transforms it into the image plane of the

projector, and we obtain the desired transformation H. This is analogous to the

inverse mapping function described earlier. This way, we efficiently achieve any

arbitrary transformation, including linear (projective) as well as nonlinear (radial

and tangential) distortions. The errors of incorrectly transformed pixels within

each triangle reduce as the mesh is refined, but processing delay also increases as

each triangle converges to a single pixel. Tardif et al . [43] used a grid of 12065

squares, and in practice we also found a mesh of 101 × 101 vertices to be visually

sufficient for typical images of 1280 × 1024 pixels. Figure 4–9 shows a sample

rectification of the display content with intensity blended masks layered on top.
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(a) Image plane of projector.

H

(b) Texture space.

−1
y

x

Figure 4–8: The image is divided into a triangular mesh, and the inverse transfor-
mation H−1 is applied on the vertices, into the texture space.

(a) Projector 1. (b) Projector 2.

Figure 4–9: Sample result of image rectification for the blended masks of
Figure 4–5 layered on top of the sample image of Figure 4–7. These are typical
images sent to the projectors.

With this, the description of our shadow removal method is complete, and we

present results in the next chapter.
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CHAPTER 5
Results

We tested our system in the Shared Reality Laboratory where a front pro-

jection system is installed to project on the interior wall surface of the room. We

used two Sanyo PLC-EF30 projectors and two Point Grey Research Flea2 cameras

equipped with 4.0-12.0 mm varifocal lenses adjusted to their widest angle. These

cameras automatically synchronize with each other.

In Figure 5–1, we show qualitative sample results with and without shadow

removal, a concrete illustration of the benefits of our system. Without, we can

see the dimmer area on the display surface as well as projector illumination on

the person as an occluder. With shadow removal, the dimmer region as well

as the extra illumination on the person disappears. Note that because of color

differences between the two projectors, the left side of the displayed content

exhibits a blue bias while the right side is more red. Although this artefact

should ideally be corrected, it demonstrates that our shadow removal algorithm

is working correctly, blending the output of the two projectors as intended.

Nevertheless, for improved blending, we would need to perform color calibration on

the projectors [3, 17, 18, 21, 22, 23, 37].

In the rest of the chapter, we explain the tests we ran and the numerical

results obtained. The experiments involved three distinct steps: calibration,

tracking, and shadow removal, each of which is described in detail below.
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(a) Without shadow removal. (b) With shadow removal.

Figure 5–1: Sample images of the room with one person standing, with and with-
out shadow removal.

5.1 Calibration

Using our modified version of Bouguet’s calibration software [5], the repro-

jection errors (root mean square errors in pixels) achieved for the intrinsics after

calibration of the cameras and projectors are shown in Table 5–1. We performed

the reprojection using the native resolution of each device as defined during cali-

bration. The resolution of the cameras was 1024 × 768 and that of the projectors

was 1280× 1024. During projector calibration, for consistency, we used images and

calibration results from Camera 1 only. As for the extrinsic parameters, Table 5–3

describes the position and orientation in space as found by our method, using

reference vectors defined in Table 5–2.

After incorporating corrective homographies, the disparity between corre-

sponding points from cameras or projectors all dropped to less than one pixel,

as expected, according to the initial homographies. Interestingly, although this

correction altered the rotations and translations of the projection matrices, it
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Table 5–1: Reprojection error (root mean square error in pixels) after calibration.

Reprojection error
u v

Camera 1 0.274 0.250
Camera 2 0.251 0.212
Projector 1 0.724 0.777
Projector 2 0.499 0.543

Table 5–2: Reference vectors for the floor, the wall, and the projective devices
(cameras and projectors), all axes following the right-hand rule convention.

Reference Frame Vector
Floor normal World [ 0 0 1 ]T

Wall normal World [ 0 −1 0 ]T

Up vector Device [ 0 0 1 ]T

Principal axis Device [ 0 1 0 ]T

Table 5–3: External parameters of the projective devices in the room.

Position (cm) Orientation (degrees)
x y z Roll Pitch Yaw

Camera 1 −22.5 −425 215 −2.65 −28.3 −8.00
Camera 2 −6.28 −429 215 −2.18 −29.2 −5.61
Projector 1 226 −451 227 −1.74 −5.54 11.7
Projector 2 −94.4 −418 202 −2.97 −4.68 −24.4
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affected the internal parameters to a much higher degree. Even though the cor-

rective homographies are close to the identity matrix, the procedure described in

Section 2.2.8 minimizes algebraic error, rather than the geometric error. Without

proper normalization, such results are not surprising.

Next, we verified the accuracy of the projector calibration by having a person

stand at the corners of every tile (61 × 61 cm) in the room, positions indicated

by the x row and y column of Tables 5–4 and 5–5. The real height and width

of the test subject were 175 cm and 53 cm respectively. Although we used the

exact position on the floor, to account for the non-flatness of people we padded

the height and width measurements to 180 cm and 60 cm, respectively, as seemed

appropriate based on the thickness of the person. Afterwards, we asked the subject

to stand at the exact y positions as indicated by the predetermined locations on

the floor, but with the x positions chosen to obtain the smallest area of shadow.

During this exercise, we made physical measurements of the errors. It was always

possible to find a position where the width of the shadow appeared to be correctly

modeled by the padded dimensions. It seems that there were systematic errors

in all axes, which increased as the person stood further away from the origin,

suggesting biased calibration errors. Table 5–4 summarizes the differences in

x between exact desired location and physical measurements. A portion of the

subject’s head sometimes cast a shadow, so we measured that portion, yielding

additional information on calibration accuracy. This difference in z is shown in

Table 5–5. Although we accumulated data for both projectors, each cell only

has one value, since the shadow was always fully corrected for at least one of
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the projectors. The maximum error we found on the floor was 54.3 cm, and the

maximum error in z, 12.1 cm, while on average the errors were 28.0 cm and 2.0

cm respectively. We repeated each measurement several times to confirm that all

measurements were precise within 2.0 centimeters.

Table 5–4: Difference in x (cm) between exact desired location and physical mea-
surements (±1.0 cm).

x (cm)
0 61 122 183 244

y
(cm)

−61 15.1 14.9 14.9 15.3 16.2
−122 15.3 16.4 18.9 21.3 23.7
−183 20.2 26.5 29.6 29.7 32.4
−244 30.5 32.7 34.3 35.2 36.8
−305 36.9 43.1 43.2 43.6 54.3

Table 5–5: Difference in z (cm) between exact desired height and physical mea-
surements (±1.0 cm). Empty cells indicate that the shadow cast by the head on
the wall was fully corrected. “N/A” means that there was no occlusion in front of
either projector.

x (cm)
0 61 122 183 244

y
(cm)

−61
−122 1.7
−183 1.7 2.5 2.7
−244 0.1 2.0 5.9 6.4 6.3
−305 4.6 N/A N/A 11.5 12.1

More recent experiments with a DeepSea V2 Stereo Camera from Tyzx [49]

having a baseline of 22 cm and a field of view of 75◦ suggest however that we were

able to obtain an accuracy within the margin of error of the camera, which is ap-

proximately 5 cm at 3 m. In this setup, we use only one camera for calibrating the

extrinsics. It would appear that the assumption we made earlier in Section 2.2.8 is

64



wrong. We thought that a plane found with two cameras should be more accurate

than one found with a camera and a projector, since the calibration of the cameras

is more accurate. However, the distance separating two devices obviously has a

great influence on the accuracy of the extrinsic parameters.

The consequence of the errors in calibration described in this section is that to

compensate we have to use a larger padding than the arbitrary one we chose before

executing the tests. It also means that the initial choice of padding did not affect

this conclusion. Moreover, despite the errors, our implementation performed well

as described later in Section 5.3. The tracking module is another source of errors,

as explained next.

5.2 Tracking

The focus of our work was not to compare different tracking algorithms, and

we simply adopted the blob tracker from the OpenCV Video Surveillance Mod-

ule [7]. Even though the disparity contours help make the tracker insensitive to

changes on the display surface, compared to the area of the person in the original

image, the area of the resulting contours is small. In our experiments, the dis-

parity map was accurate within one pixel, but color response differences between

the two cameras meant that the blob tracking algorithm had trouble segmenting

the thin contours of people from the noise generated during dynamic video play-

back. Reliability was also problematic, especially when a person occluded another

person.

Nevertheless, when the blob tracker functioned correctly, the procedure

described in Section 3.2 provided 3D information, at least as accurate as the

65



calibration described in the previous section. Although its performance was not

tested thoroughly, the precision of the tracker was not better than 5% of the image

dimensions, as the bounding box often moved even when a person stood still. Also,

it appears that since the same calibration information was used for the tracker

and shadow removal, the large calibration errors described in the previous section

did not affect as greatly as anticipated the accuracy of tracking when used in

conjunction with our shadow removal module. One can appreciate this fact as well

as the behavior of the tracker from the results described in the following section.

Additionally, our recent experiments with the Tyzx DeepSea V2 Stereo

Camera show that stereo algorithms are capable of successfully segmenting the

display surface from objects moving in front, thus achieving very reliable tracking.

5.3 Shadow Removal

Typical results of shadow removal are shown in Figures 5–2 and 5–3, for a

static and dynamic video projection, respectively.1 Although the system currently

achieves reasonable results in the case of static images, some additional refinement

is necessary for it to perform well with dynamic video projection. In the case of

static images, we could compensate for calibration and tracker imprecision and

inaccuracies by appropriately padding the tracker rectangles, increasing the dimen-

sions by 20%. However, in the case of video projection, the tracker frequently fails,

resulting in large visible shadows such as those seen in Figure 5–3(g).

1 The full video is available from
http://cim.mcgill.ca/~saudet/research/procams2007.mp4 .
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(a) frame 100 (b) frame 150 (c) frame 200 (d) frame 250

(e) frame 300 (f) frame 350 (g) frame 400 (h) frame 450

Figure 5–2: Frames from demo video with static image projection.

(a) frame 150 (b) frame 250 (c) frame 350 (d) frame 850

(e) frame 900 (f) frame 1100 (g) frame 1150 (h) frame 1200

Figure 5–3: Frames from demo video with dynamic video projection.
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On the other hand, using the Tyzx DeepSea V2 Stereo Camera, the results are

significantly improved, especially in the case of dynamic video playback.2

Still, an additional problem is that the system also generates artefacts during

occluder movement, such as in Figure 5–3(b), because it does not display the

masks in a synchronized manner. Currently, each machine receives a mask,

processes it, and sends it for display without regard for whether other machines are

ready to display. Obviously, synchronization would improve the results, but this

entails significant software complexity [26], which we did not pursue further. Also,

we hypothesize that even with a proper software implementation, synchronization

of projectors at the hardware level might be required to obtain imperceptible

transitions. Other visible artefacts, such as the ones seen in Figures 5–2(a) and

5–2(b), are due mostly to fast movements not correctly predicted by the Kalman

filter.

Finally, since one of our objectives was to implement a system that could

perform shadow removal in real time on commodity hardware, we tested the

performance of the disparity contours, tracking, shadow removal, and image

rectification modules on an Intel Pentium 4 2.60 GHz CPU with an NVIDIA

GeForce FX 5200 graphics card. The test video contained only one person walking

in front of the display surface. With the current largely unoptimized codebase,

2 Demo with dynamic video playback:
http://cim.mcgill.ca/~saudet/research/video_demo.mp4

Technical demo: http://cim.mcgill.ca/~saudet/research/tech_demo.mp4
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we obtained the results of Table 5–6, which do not take into account delays in

capture, display or network transfer.

When using the higher resolutions detailed in Table 5–6, the total latency of

307 ms is too high to provide a quick enough response, but with lower resolutions,

it drops to 79.3 ms. We used the latter values to obtain the results described pre-

viously in this section, and this shows that our system can perform in real time on

normal hardware. This concludes our test results, whose implications we discuss in

the next chapter.

Table 5–6: Delay (milliseconds ± standard deviation) for processing disparity con-
tours, OpenCV blob tracking, shadow removal, and image rectification in OpenGL,
at two different resolutions for each module, using the test video with one person.
Note: Image rectification is done in parallel on multiple computers, one for each
projector.

Module Resolution Delay (ms) Resolution Delay (ms)
Disparity contours 1024×768 44.5±0.5 512×384 11.3±0.2
Tracking 512×384 91.7±8.4 256×192 24.1±3.1
Shadow removal 1280×1024 159±11 640×512 39.6±3.2
Image rectification 1280×1024 11.8±2.6 640×512 4.33±1.15
Total 307±23 79.3±7.7
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CHAPTER 6
Discussion

Considering the results we obtained as described in the previous chapter,

compared to others, our object tracking method for shadow removal has several

pros and cons. First, shadow detection [6, 18, 22, 23, 34] requires that at least one

camera be placed strategically to have an unoccluded view of the entire scene. In

practice, this can sometimes be challenging. Infrared occlusion detection [13, 42]

requires one camera alongside each projector, in addition to the installation of

near infrared floodlights at the display surface. In contrast, our method only

requires that two cameras be placed appropriately for tracking people, which does

not necessarily require an unoccluded view of the scene. Second, using shadow

detection one cannot remove shadows before they appear. The simple approach

of infrared occlusion detection effectively solves this problem by preemptively

dilating the occluded region to account for possible movement in any direction.

Our method goes one step further and uses prediction information from a Kalman

filter, although a more carefully thought out implementation could more closely

follow the movements of a person than the current results show. Because tracking

can take advantage of such temporal information to predict motion, shadows

can be removed before they occur. Third, since both our method and infrared

occlusion detection methods do not make use of projected images, it does not

matter, in principle, whether we project static images or dynamic video, and
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can work even in the presence of video projection at high frame rates. On the

other hand, shadow detection becomes dramatically more complex in the case of

video projection. Although Jaynes et al . [22] achieved performance of nine frames

per second, it is uncertain whether this can be increased easily to 60 frames per

second, the threshold at which humans stop perceiving flickering [15]. Flagg et

al . [13] found that the combined latency of their high speed camera and projector

was in the order of 50 ms, in addition to about 3 ms of processing on GPU.

With this hardware and assuming comparable processing delay, the algorithm as

developed by Jaynes et al . [22] cannot scale beyond 19 frames per second, which

would of course improve with more responsive technology. However, their method

still requires an unoccluded view of the whole display surface and cannot tolerate

occlusion of any camera.

Our method has drawbacks as well. The calibration required for both the

shadow detection and infrared occlusion detection methods can be automated

relatively easily, as explained in the literature review of Section 1.3. In our case,

the process is more elaborate, and due to simplifications in the implementation

of our prototype, a tedious calibration phase is presently required. Furthermore,

camera-based tracking requires a sufficiently illuminated environment to make the

occluders visible. Even so, the simple tracking we used does not model limbs, and

as such, effective shadow removal cannot be attained if the users wave their hands

in front of the display. Moreover, tracking fails when one person occludes another

in the camera view. In this regard, shadow detection and infrared occlusion

detection methods are superior. Fortunately, our approach is not bound to any
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particular tracker, so these limitations may be overcome by using better or simply

more appropriate tracking methods, as our recent experiments with the Tyzx

DeepSea V2 Stereo Camera proves.

In our implementation, we identified various sources of calibration and

tracking errors. We found that the former may result from improperly modeled

nonlinear distortion in the periphery of the camera image, uneven floor or wall,

and corrective homographies used for the projectors, which currently do not

attempt to minimize geometric errors. However, even if we manage to fix all

these issues, the current method still requires a laborious manual calibration and

can only work on flat display surfaces. For these reasons, we plan to redesign

the method so that it works on an arbitrary non-flat display surface while not

requiring the manual calibration. The system should also work in real time on

widely available commodity hardware. As future work, we propose a calibration

procedure that would consist of a user walking around the room and otherwise

simulating normal interaction with the computer. Using color cameras, the system

would then detect shadows occurring on the display surface, similar to the way

current shadow detection methods work. Our hypothesis is that without further

user intervention it is possible to design a system that will map the tracking

information to the detected shadows. After this automated calibration phase, the

system will then be able to use the live tracking information with the mapping to

locate and remove shadows from any non-flat display surface.

In the case of the tracker, although it performs well for static images, we do

not obtain acceptable results with a dynamic video background. At present, it
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uses foreground information, the disparity contours, based solely on geometric

properties of the cameras. However, we noted that in the area of the display

surface, even though the disparity map was accurate, using it produced too

much noise, probably caused by intrinsic differences between the two camera

sensors. One way to make tracking insensitive to projector light would be to

use near infrared cameras, but we do not believe them to be required, unless a

dark environment is desired. A photometric color calibration should provide as

good or even better performance with color cameras. There also exist better, but

more complex camera-based tracking technology, such as the Tyzx DeepSea V2

System [49] that not only works well with video projection, but can cope with

occlusion as well.

The work presented here provides an initial proof of concept that shadow

removal can be performed on today’s hardware using conventional object tracking

rather than requiring the more elaborate configuration of the near infrared

occlusion detection approach or other more expensive alternatives not using

commodity hardware. While there remains considerable effort ahead to refine and

optimize our method, current results clearly demonstrate its feasibility. We hope

that this will lead to better projector-camera systems now that we have shown

that we can leverage object tracking technology already in place in many front

projection environments, and achieve effective shadow removal.

73



References

[1] Mark Ashdown and Yoichi Sato. Steerable Projector Calibration. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’05) - Workshops (ProCams 2005), volume 3, page 98.
IEEE Computer Society, 2005.

[2] Samuel Audet and Jeremy R. Cooperstock. Shadow Removal in Front
Projection Environments Using Object Tracking. In 2007 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR
2007) - Workshops (ProCams 2007). IEEE Computer Society, 2007.

[3] Oliver Bimber, Gordon Wetzstein, Andreas Emmerling, and Christian
Nitschke. Enabling View-Dependent Stereoscopic Projection in Real Envi-
ronments. In Fourth IEEE and ACM International Symposium on Mixed and
Augmented Reality (ISMAR ’05), pages 14–23. IEEE Computer Society, 2005.

[4] Gunilla Borgefors. Distance Transformations in Digital Images. Computer
Vision, Graphics and Image Processing, 34(3):344–371, 1986.

[5] Jean-Yves Bouguet. Camera Calibration Toolbox for Matlab, 2006.
http://www.vision.caltech.edu/bouguetj/calib_doc/.

[6] Tat-Jen Cham, James M. Rehg, Rahul Sukthankar, and Gita Sukthankar.
Shadow Elimination and Occluder Light Suppression for Multi-Projector
Displays. In 2003 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR ’03), volume 2, pages 513–520. IEEE
Computer Society, 2003.

[7] Trista P. Chen, Horst Haussecker, Alexander Bovyrin, Roman Belenov,
Konstantin Rodyushkin, Alexander Kuranov, and Victor Eruhimov. Computer
Vision Workload Analysis: Case Study of Video Surveillance Systems. Intel
Technology Journal, 9(2):109–118, May 2005.

[8] Jeremy R. Cooperstock. Interacting in Shared Reality. In HCI International
2005: Conference on Human-Computer Interaction, July 2005.

74

http://www.vision.caltech.edu/bouguetj/calib_doc/


75

[9] Daniel Cotting, Martin Naef, Markus Gross, and Henry Fuchs. Embedding
Imperceptible Patterns into Projected Images for Simultaneous Acquisition
and Display. In Third IEEE and ACM International Symposium on Mixed
and Augmented Reality (ISMAR ’04), pages 100–109. IEEE Computer Society,
2004.

[10] Carolina Cruz-Neira. The Emerging Technology of Virtual Environments.
Journal of Aerospace Computing, Information, and Communication, 2(2):120–
124, February 2005.

[11] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A. DeFanti. Surround-
Screen Projection-Based Virtual Reality: The Design and Implementation of
the CAVE. In 20th Annual Conference on Computer graphics and Interactive
Techniques (SIGGRAPH ’93), pages 135–142. ACM Press, 1993.

[12] Carolina Cruz-Neira, Daniel J. Sandin, Thomas A. DeFanti, Robert V.
Kenyon, and John C. Hart. The CAVE: Audio Visual Experience Automatic
Virtual Environment. Communications of the ACM, 35(6):64–72, 1992.

[13] Matthew Flagg, Jay Summet, and James M. Rehg. Improving the Speed
of Virtual Rear Projection: A GPU-Centric Architecture. In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR ’05) - Workshops (ProCams 2005), volume 3, page 105. IEEE
Computer Society, 2005.

[14] Matthew Flagg, Jay Summet, Ramswaroop Somani, James M. Rehg, Rahul
Sukthankar, and Tat-Jen Cham. Shadow Elimination and Occluder Light
Suppression for Switched Multi-Projector Displays. In Ninth Internationl
Conference on Computer Vision (ICCV ’03). IEEE Computer Society, 2003.

[15] Yves Galifret. Visual persistence and cinema? Comptes Rendus Biologies,
329(5-6):369–385, May-June 2006.

[16] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Com-
puter Vision. Cambridge University Press, second edition, 2004.

[17] Maria Nadia Hilario. Occlusion Detection in Front Projection Environments
Based on Camera-Projector Calirbation. Master’s thesis, Department of
Electrical and Computer Engineering, McGill University, 2005.



76

[18] Maria Nadia Hilario and Jeremy R. Cooperstock. Occlusion Detection for
Front-Projected Interactive Displays. In Advances in Pervasive Computing.
Austrian Computer Society (OCG), 2004.

[19] ITU Radiocommunication Sector Recommendation BT.709, 1211 Geneva 20,
Switzerland. Basic Parameter Values for the HDTV Standard for the Studio
and for International Programme Exchange, 1990. [Formerly CCIR Rec. 709].

[20] Yuri Ivanov, Aaron Bobick, and John Liu. Fast lighting independent back-
ground subtraction. International Journal of Computer Vision, 37(2):199–207,
2000.

[21] Christopher Jaynes, Brent Seales, Kenneth Calvert, Zongming Fei, , and
James Griffioen. The Metaverse: A networked collection of inexpensive,
self-configuring, immersive environments. In 7th International Workshop on
Immersive Projection Technology and 9th Eurographics Workshop on Virtual
Environments (IPT/EGVE ’03), pages 115–124. ACM Press, 2003.

[22] Christopher Jaynes, Stephen Webb, and R. Matt Steele. Camera-Based
Detection and Removal of Shadows from Interactive Multiprojector Displays.
IEEE Transactions on Visualization and Computer Graphics, 10(3):290–301,
2004.

[23] Christopher Jaynes, Stephen Webb, R. Matt Steele, Michael Brown, and
Brent Seales. Dynamic Shadow Removal from Front Projection Displays. In
2001 Conference on Visualization (VIS ’01), pages 175–182. IEEE Computer
Society, 2001.

[24] P. KaewTraKulPong and R. Bowden. An Improved Adaptive Background
Mixture Model for Realtime Tracking with Shadow Detection. In 2nd Euro-
pean Workshop on Advanced Video Based Surveillance Systems (AVBS01).
Kluwer Academic Publishers, 2001.

[25] Attila Licsar and Tamas Sziranyi. Hand Gesture Recognition in Camera-
Projector System. In Computer Vision in Human-Computer Interaction:
ECCV 2004 Workshop on Human-Computer Interaction (CVHCI04), pages
83–93. Springer, 2004.

[26] Ikuhisa Mitsugami, Norimichi Ukita, and Masatsugu Kidode. Displaying a
Moving Image By Multiple Steerable Projectors. In 2007 IEEE Computer



77

Society Conference on Computer Vision and Pattern Recognition (CVPR
2007) - Workshops (ProCams 2007). IEEE Computer Society, 2007.

[27] C. Pinhanez, F. Kjeldsen, A. Levas, G.S. Pingali, J. Hartman, A. Levas, M.E.
Podlaseck, V. Kwatra, and P.B. Chou. Transforming Surfaces into Touch-
Screens. Technical Report RC22273 (W0112-016), IBM Research, December
2001.

[28] Alfio Quarteroni, Riccardo Sacco, and Fausto Saleri. Numerical Mathematics
(Texts in Applied Mathematics). Springer-Verlag New York, Inc., Secaucus,
NJ, USA, second edition, 2006.

[29] Ramesh Raskar and Paul Beardsley. A Self-Correcting Projector. In
2001 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR ’01), volume 2, pages 504–508. IEEE Computer Society,
2001.

[30] Ramesh Raskar, Michael S. Brown, Ruigang Yang, Wei-Chao Chen, Greg
Welch, Herman Towles, Brent Seales, and Henry Fuchs. Multi-Projector Dis-
plays Using Camera-Based Registration. In IEEE Conference on Visualization
’99 (VIS ’99), pages 161–168. IEEE Computer Society Press, 1999.

[31] Ramesh Raskar, Greg Welch, Matt Cutts, Adam Lake, Lev Stesin, and
Henry Fuchs. The Office of the Future: A Unified Approach to Image-based
Modeling and Spatially Immersive Displays. In 25th Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’98), pages 179–188. ACM
Press, 1998.

[32] Ramesh Raskar, Greg Welch, and Henry Fuchs. Seamless Projection Overlaps
Using Image Warping and Intensity Blending. In Fourth International
Conference on Virtual Systems and Multimedia (VSMM ’98), November 1998.

[33] Yoichi Sato, Yoshinori Kobayashi, and Hideki Koike. Fast Tracking of Hands
and Fingertips in Infrared Images for Augmented Desk Interface. In Fourth
IEEE International Conference on Automatic Face and Gesture Recognition
2000 (FG ’00), page 462. IEEE Computer Society, 2000.

[34] Rahul Sukthankar, Tat-Jen Cham, and Gita Sukthankar. Dynamic Shadow
Elimination for Multi-Projector Displays. In 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR 2001),
volume 2, pages 151–157. IEEE Computer Society, 2001.



78

[35] Jay Summet, Gregory D. Abowd, Gregory M. Corso, and James M. Rehg.
Virtual Rear Projection: Do Shadows Matter? In CHI ’05 extended abstracts
on Human factors in computing systems, pages 1997–2000. ACM Press, 2005.

[36] Jay Summet, Mathew Flagg, James M. Rehg, Gregory M. Corso, and Gre-
gory D. Abowd. Increasing the Usability of Virtual Rear Projection Displays.
In IEEE International Workshop on Projector-Camera Systems 2003 (Pro-
Cams 2003). IEEE Computer Society, 2003.

[37] Jay Summet, Matthew Flagg, Tat-Jen Cham, James M. Rehg, and Rahul
Sukthankar. Shadow Elimination and Blinding Light Suppression for
Interactive Projected Displays. IEEE Transactions on Visualization and
Computer Graphics, 13(3):508–517, 2007.

[38] Wei Sun. Multi-camera object segmentation in dynamically textured scenes
using disparity contours. PhD thesis, Department of Electrical and Computer
Engineering, McGill University, 2006.

[39] Wei Sun and Jeremy R. Cooperstock. An empirical evaluation of factors influ-
encing camera calibration accuracy using three publicly available techniques.
Machine Vision Application, 17(1):51–67, 2006.

[40] Cisco Systems. Annual Report 2007, Letter To Our Shareholders, 2007.
http://www.cisco.com/web/about/ac49/ac20/ac19/ar2007/letter_to_
shareholders/, page viewed November 2007.

[41] Naoya Takao, Jianbo Shi, and Simon Baker. Tele-Graffiti: A Camera-
Projector Based Remote Sketching System with Hand-Based User Interface
and Automatic Session Summarization. International Journal of Computer
Vision, 53(2):115–133, July 2003.

[42] Desney S. Tan and Randy Pausch. Pre-emptive Shadows: Eliminating the
Blinding Light from Projectors. In CHI 2002 Conference on Human Factors
in Computing Systems - Extended Abstracts, pages 682–683. ACM Press, 2002.

[43] Jean-Philippe Tardif, Sébastien Roy, and Martin Trudeau. Multi-projectors
for arbitrary surfaces without explicit calibration nor reconstruction. In
Fourth International Conference on 3-D Digital Imaging and Modeling (3DIM
’03), pages 217–224. IEEE Computer Society, 2003.

http://www.cisco.com/web/about/ac49/ac20/ac19/ar2007/letter_to_shareholders/
http://www.cisco.com/web/about/ac49/ac20/ac19/ar2007/letter_to_shareholders/


79

[44] Bill Triggs. Autocalibration from Planar Scenes. In 5th European Conference
on Computer Vision (ECCV ’98), volume I, pages 89–105. Springer-Verlag,
1998.

[45] Jeroen van Baar, Thomas Willwacher, Srinivas Rao, and Ramesh Raskar.
Seamless Multi-Projector Display on Curved Screens. In 7th International
Workshop on Immersive Projection Technology and 9th Eurographics Work-
shop on Virtual Environments (IPT/EGVE ’03), pages 281–286. ACM Press,
2003.

[46] Christian von Hardenberg and François Bérard. Bare-Hand Human-Computer
Interaction. In 2001 Workshop on Perceptive User Interfaces (PUI ’01), pages
1–8. ACM Press, 2001.

[47] Peter Weiss. Deep Vision - When walls become doors into virtual worlds.
Science News, 161(22):344–345, June 1, 2002.

[48] Greg Welch and Gary Bishop. An Introduction to the Kalman Filter.
Technical Report TR 95-041, Department of Computer Science, University of
North Carolina at Chapel Hills, July 2006.

[49] John Iselin Woodfill, Gaile Gordon, Dave Jurasek, Terrance Brown, and Ron
Buck. The Tyzx DeepSea G2 Vision System, A Taskable, Embedded Stereo
Camera. In 2006 Conference on Computer Vision and Pattern Recognition
Workshop (CVPRW ’06), page 126. IEEE Computer Society, 2006.

[50] Mike Wozniewski, Zack Settel, and Jeremy R. Cooperstock. A framework for
immersive spatial audio performance. In The 2006 International Conference
on New Interfaces for Musical Expression (NIME ’06), pages 144–149.
IRCAM - Centre Pompidou, 2006.

[51] Zhengyou Zhang. A Flexible New Technique for Camera Calibration. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330–1334,
2000.


	Abstract
	Sommaire
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Field of Research
	Outstanding Issues
	Literature Review
	Shadow Detection Methods
	Occlusion Detection Methods

	Object Tracking for Shadow Removal
	Research Overview

	Camera and Projector Calibration
	Fundamentals in 3D Geometry
	Geometry on Planes
	Projection onto the Image Plane
	Back-Projection from the Image Plane

	Calibration from Planes
	Intrinsic Parameters
	A Special Conic: The Absolute Conic
	The Circular Points
	Corner Extraction
	Homography Estimation
	Estimation of the Intrinsics
	Finding the Intrinsics of a Projector
	Extrinsic Parameters


	Tracking
	Disparity Contours
	3D Tracking

	Shadow Removal
	Projector Coverage
	Intensity Blending
	Image and Mask Projection
	Image Rectification
	Image Transformation with OpenGL


	Results
	Calibration
	Tracking
	Shadow Removal

	Discussion
	References

