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Abstract 
This paper describes a general approach for automat- 
ically programming a behavior-based robot. New be- 
haviors are learned by trial and error using a perfor- 
mance feedback function as reinforcement. Two algo- 
rithms for behavior learning are described that com- 
bine techniques for propagating reinforcement values 
temporally across actions and spatially across states. 
A behavior-based robot called OBELIX (see Figure 1) 
is described that learns several component behaviors in 
an example task involving pushing boxes. An experi- 
mental study using the robot suggests two conclusions. 
One, the learning techniques are able to learn the in- 
dividual behaviors, sometimes outperforming a hand- 
coded program. Two, using a behavior-based architec- 
ture is better than using a monolithic architecture for 
learning the box pushing task. 

Introduction 
Behavior-based robots using the subsumption architec- 
ture [l, 41 decompose an agent into a layered set of 
task-achieving modules. Each module implements one 
specific behavior, such as “

avoid 

hitting anything

” 

or 
“

keep 

following the wall

”

. 

Thus, each module has to 
solve only the part of the perception or planning prob- 
lem that it requires. Furthermore, this approach nat- 
urally lends itself to incremental improvement, since 
new layers can be easily added on top of existing lay- 
ers. 

One problem with behavior-based robots is that 
the component modules have to be laboriously pro- 
grammed by a human designer. If new behaviors could 
be learned, it would free the designer from needing a 
deep understanding of the interactions between a par- 
ticular robot and its task environment. 

The problem of acquiring new behaviors has been 
addressed by work in reinforcement learning [5, 11, 121. 
This studies how an agent can choose an action based 
on its current and past sensor values such that it 
maximizes over time a reward function measuring the 
agent

’

s 

performance. Teaching robots using reinforce- 
ment learning is attractive because specifying a reward 
function for a task is often much easier than explicitly 

Figure 1: The OBELIX robot examining a box 

programming the robot to carry out the task. However, 
previous work has been limited to situations where the 
task is learned monolithically, that is as a single be- 
havior. 

This paper proposes instead using reinforcement 
learning to automate the programming of a behavior- 
based robot. Each behavior in such a robot is gener- 
ally comprised of an applicability condition specifying 
when it is appropriate, and an action generation mech- 
anism specifying the best action in any state. Our ap- 
proach assumes the robot is initially given the applica- 
bility condition on each behavior, and a priority order- 
ing to resolve conflicts among various behaviors. How- 
ever, it does not depend on any particular set of sensors 
or actions. The key idea is to learn an action gener- 
ation mechanism for each behavior that maximizes a 
fixed performance function over time. 

Using a behavior-based architecture in reinforcement 
learning has several advantages. Separate (and sim- 
ple) reward functions can be written for each module, 
allowing the robot to be rewarded more frequently. 
This simplifies the temporal credit assignment prob- 
lem since rewards have to be propagated across fewer 
actions. The applicability function of each module pro- 
vides a natural medium for encoding state history in- 
formation. This also helps reduce the perceptual alias- 
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ing problem [13], since the same state may provoke 
different reactions from the different modules. 

BEIJ obot Vehicle 
This section describes a robot that was used as a 
testbed for the learning experiments. Figure 1 shows a 
behavior-based robot called OBELIX that learns sev- 
eral constituent behaviors in an example task of push- 
ing boxes. The robot uses a 9600 baud Arlan 130 radio 
link to continually send sensor data back to a worksta- 
tion which in turn responds with motion commands. 

The robot itself is built on a small, 12” diameter, 3- 
wheeled base from RWI. For our experiments, we limit 
the motion of the vehicle to either moving forward, or 
turning left or right in place by two different angles (22 
degrees or 45 degrees). 

OBELIX’s primary sensory system is an array of 8 
sonar units. Each sensor in the array has a field of view 
of roughly 20 degrees and can see out to about 35 feet. 
For the purposes of the experiments described here, 
we use only two range bins. One extends from 9” to 
18” (NEAR) d an another covers the distance between 
18” and 30” (FAR). Th e individual sonar units are 
arranged in an orthogonal pattern. There are 4 sonars 
looking toward the front and 2 looking toward each 
side. 

There are also two secondary sources of sensory in- 
formation. There is an infra-red (IR) detector which 
faces straight forward and is tuned to a response dis- 
tance of 4”. This sensor provides a special bit called 
BUMP since it only comes on when something is right 
against the front of the robot. The robot also moni- 
tors the motor current being used for forward motion. 
If this quantity exceeds some fixed threshold, another 
special bit, STUCK, is turned on. 

To summarize, 18 bits of information are extracted 
from the sensors on the robot. Of these, 16 bits of 
information come from the 8 sonar sensors (I bit from 
the NEAR range and 1 bit from the FAR range). There 
is also 1 bit of BUMP information, and 1 bit of STUCK 
information. The 18 bits generate a total state space 
of about a quarter million states. It is the job of the 
learning algorithm to decide which of the 5 actions to 
take in each of these states. 

This section describes an example task of having a 
robot push boxes across a room. One can view this as a 
simplified version of a task carried out by a warehouse 
robot, although clearly one would not use a round 
robot to push square boxes! Conceptually, the box 
pushing task involves three subtasks. First, the robot 
needs to find potential boxes and discriminate them 
from walls and other obstacles. Second, it needs to be 
able to push a box across a room. Finally, it needs to 
be able to recover from stalled situations where it has 
either pushed a box to a corner, or has attempted to 
push an immovable object like a wall. Our approach 

will be to learn each of these subtasks as a distinct 
reactive behavior. By reactive, we mean that we base 
the control decision on only the currently perceived 
sensory information. 

Figure 2 illustrates the overall structure of a 
behavior-based robot for the box pushing task. It also 
depicts a priority network that imposes an ordering on 
the three subtasks of the box pushing task. The prior- 
ity network is specified by “suppressor” nodes shown 
as circles containing the letter “S”. The semantics of 
a suppressor node is that commands injected from the 
top of the node take precedence over those injected 
horizontally from the left side. Thus, Figure 2 shows 
that the unwedging behavior supersedes the pushing 
behavior, and that both of these in turn supersede the 
finding behavior. 

Figure 2: Modules in a Box Pushing Robot 

ehavior 1: 
In order to push a box, OBELIX has to first find one. 
At this point we need to define what constitutes a 
“box” . The constraints on a box are that the robot 
should be able to physically push it, and be able to 
distinguish it from obstacles such as walls. In practice, 
we use empty rectangular paper cartons about a cubic 
foot in volume. 

One way to encourage the robot to find boxes is to re- 
ward the robot whenever the NEAR sensor bits on the 
front sonars turn on. This encourages the box finder to 
go toward objects. We use a disjunction of the NEAR 
state bits of the central front facing sonars on the robot 
as a “matched filter” for recognizing boxes. If the robot 
went forward, and turned these bits on, the robot is 
“rewarded” by +3; if these bits are off, the robot is 
“punished” by -1; the default reward is 0. The box 
finder is always applicable; however, since its priority 
is the lowest, it controls the robot only when the other 
behaviors are inapplicable. 

ehavior 2: 
Once OBELIX has found a box, it needs to push it 
until the box is wedged against an immovable obstacle 

MAHADEVAN & CONNELL 769 



(like a wall). What makes this task difficult is that 
boxes tend to rotate if they are not pushed with a 
force directed through their center of drag. OBELIX 
has to learn to keep the box centered in its field of 
view, by turning whenever the box rotates to one side 
of the robot. The robot gets rewarded by +1 whenever 
it continues to be bumped and going forward. It gets 
punished by -3 whenever it loses contact with the box. 

Intuitively, the box pushing behavior should be ap- 
plicable whenever OBELIX is actively pushing a box, 
and should not be applicable otherwise. One prob- 
lem with such a criterion is that the moment OBELIX 
loses contact with a box, the behavior is turned off, and 
OBELIX has no opportunity to correct its mistakes. A 
better scheme in practice is to allow a behavior to con- 
tinue to be applicable for a fixed number of time steps 
after the applicability predicate (which first turned it 
on) ceases to be true. In particular, the box pushing 
behavior continues to be applicable 5 time units af- 
ter OBELIX has lost contact with a box. This allows 
some time for it to try to recover and push the box 
once again. 

Behavior 3: Getting Unwedged 
Given that OBELIX is learning to find and push boxes 
in a cluttered laboratory environment, it is very likely 
that it will bump into walls and other immovable ob- 
stacles and become stalled or wedged. Pushing a box 
into a wall will also cause a stalled state. A separate 
behavior is dedicated in OBELIX to extricate it from 
such situations. The basic idea is for OBELIX to turn 
around sufficiently so that it can begin going forward 
again. Even though this task seems simple, it turns 
out to be quite hard. OBELIX can easily learn to turn 
once it gets into a stalled situation. It does not readily 
learn to turn in the right direction, and by the right 
amount. 

The unwedging behavior is rewarded by +l when the 
robot is no longer stalled, and is able to go forward once 
again. It is punished by -3 if the robot continues to be 
stalled. The unwedging behavior is deemed applicable 
any time the robot is stalled. As in the case of the box 
pushing behavior, the unwedging behavior continues 
to be applicable for 5 time steps after the robot is no 
longer stalled. 

earning Algorithms 
This section briefly describes two learning algorithms 
that we have implemented on OBELIX. They combine 
a well known learning algorithm for temporal credit as- 
signment, Q learning [12], with two different structural 
credit assignment techniques: weighted Hamming dis- 
tance and statistical clustering. The goal of the learn- 
ing is to acquire an action generation mechanism for 
each module that maximizes the reward obtained by 
the module over time. A much more detailed descrip- 
tion of the two algorithms is given in [9]. 
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Learning 
Q learning [I2] uses a single utility function &(z, a) 
across states (2) and actions (a) to evaluate both ac- 
tions and states. By definition, &(z, a) = P + yE(y), 
where r is immediate payoff or reward, and E(y) is the 
utility of the state y resulting from the action. y is a 
discount parameter between 0 and 1. In turn, E(y) = 
maximum Q(y, a) over all actions c4. During learning, 
the stored utility values Q(z, o) have not yet converged 
to their final value (i.e. to r + yE(y)). Thus, the dif- 
ference between the stored values and their final values 
gives the error in the current stored value. In particu- 
lar, Q learning uses the following rule to update stored 
utility values. 

9(x, 4 + 9(x, 4 + P(r + YE(Y) - Qb, 4) 
Thus, the new Q value is the sum of the old one and 

the error term multiplied by a parameter p, between 0 
and 1. The parameter fl controls the rate at which the 
error in the current utility value is corrected. 

Weighted Hamming Distance 
To become better at box pushing, OBELIX needs 
to propagate rewards across states, so that “similar” 
states provoke the same response from it. The simi- 
larity metric used in the first algorithm is as follows. 
First, the state description is reduced from 18 to 9 
bits by disjoining some neighboring sonar bits. Then, 
the reduced states are compared based on the Mam- 
ming distance between them. The Hamming distance 
between any two states is simply the number of state 
bits that are different between them. However, in our 
case, not all bits are equally important. Since it is 
important to never generalize across states in which 
BUMP or STUCK differ, these carry a higher weight 
than the other state bits. In particular, BUMP and 
STUCK carry a weight of 5, the near sonar bits carry 
a weight of 2, and the other bits carry a default weight 
of 1. With these weights, we define two states as be- 
ing distinct if the weighted Hamming distance between 
them is greater than 2. 

Statistical Clustering 
The second algorithm uses statistical clustering to 
propagate reward values across states. Using this algo- 
rithm, the robot learns a set of clusters for each action 
that specify the utility of doing the action in particular 
classes of states. More formally, a cluster is a vector of 
probabilities < pi, . . . . pn >, where each pi is the prob- 
ability of the ith state bit being a 1. Each cluster has 
associated with it a Q value indicating its worth. Clus- 
ters are extracted from instances of states, actions, and 
rewards that are generated by the robot exploring its 
task environment. 

A state s is considered an instance of a cluster c 
if two conditions are satisfied. One, the probability 
P(s E c) - computed by multiplying the probabilities 



pi or (1 -pi), depending on whether the ith bit of state 
s is a 1 or a 0 - should be greater than some threshold 
c. Two, the absolute difference between the Q values 
of the state and the cluster should be less than some 
threshold S. If a state matches a cluster, it is merged 
into the cluster by updating the cluster probabilities. 

If a state does not match any of the existing clusters, 
a new cluster is created with the state being its only in- 
stance. Alternatively, two clusters can be merged into 
one “supercluster” if the Euclidean “distance” between 
the clusters (treating the clusters as points in n dimen- 
sional probability space) is less than some threshold p, 
and the absolute difference between their Q values is 
less than S. 

Act ion Generat ion 

The best action a to perform in a given state x is the 
one that has the highest utility Q(x, a). The first algo- 
rithm stores an array Q(x, a) exhaustively specifying 
the utilities of doing any action a in any state x. In 
contrast, the second algorithm computes the utility as 

Q(x,a) 1 ,w. - The numerator is the sum 

of the Q values of the clusters stored under an action, 
weighted by the probability of state x matching a clus- 
ter c. The denominator, which is a normalization fac- 
tor, is the sum of the match probabilities of the state 
z over the clusters associated with action a. 

Summary of Algorithms 1 and 2 

Figure 3 combines the description of the two algo- 
rithms. Step 2b requires some explanation. In order 
to ensure the convergence of the Q values, it is impor- 
tant that every state be sampled periodically. This is 
ensured by taking a random action some of the time. 

1. Initialization: (For algorithm 1, create an array 
Q(x, a) whose initial entries are 0.) (For algorithm 
2, initialize the clusters under each action a to 
NIL, and fix c, S, and p.) 
2. Do the following steps forever: 
a. Observe the current world state s. 
b. 90% of the time, choose an action a that 
maximizes Q(s, u). Else choose a random action. 
c. Carry out a. Let the reward obtained be T. 
d. Update Q( s Q via the Q learning update rule. , ) 
e. (For algorithm 1, also update Q(s’, u) for all s’ 
s.t. weighted-humming-distunce(s, s’) 5 2.) 
(For algorithm 2, if 3 a cluster c under a which 
matches s, merge s into c. Else create a new 
cluster c’ whose only instance is s. Merge 
existing clusters under a if possible.) 

Figure 3: The two learning algorithms 

This section describes a detailed experimental study 
evaluating the performance of the two learning algo- 
rithms described above. Mainly, we are interested in 
determining (i) how well the robot learns each indi- 
vidual behavior, and (ii) the effect of decomposing 
the overall task into a set of subsumption modules on 
learning. 

The first question can be answered by measuring the 
improvement in performance of each individual behav- 
ior as a function of the learning. The second ques- 
tion can be answered by comparing the improvement 
in overall performance obtained by learning each be- 
havior separately with that obtained by learning the 
box pushing task as a single monolithic control sys- 
tem. 

Learning Each ehavior Separately 
For the first set of experimental results, we focus on 
learning each behavior separately. Figure 4 presents 
data collected using the robot on learning to find 
boxes using four different algorithms: Q learning with 
weighted Hamming, Q learning with statistical clus- 
tering, a handcoded agent, and a random agent. The 
graph plots the average value of the reward obtained 
so far by the finder module at various points along 
the learning run. That is, the vertical axis represents 
the sum of all rewards received by the module divided 
by the number of steps that the module has been in 
control of the robot. The horizontal axis represents 
the percentage of the learning run of 2000 steps that 
has elapsed. Note that each module is active only for 
some fraction of these steps. The graph shows that 
the two learning algorithms improve steadily over the 
learning run, and do substantially better than the ran- 
dom agent but not as well as the handcoded agent. 
The handcoded and random agents show some perfor- 
mance variations over the learning run partially due to 
the fact that the robot takes a random action 10% of 
the time. 

We have similarly analyzed the performance of the 
learning algorithms on the other two behaviors, push- 
ing and unwedging. However, space does not permit 
showing these graphs (again, a more complete treat- 
ment is given in [9]). Instead, we summarize our results 
by extracting some quantitative information from the 
data. Table 1 compares the “ultimate performance” 
obtained using the learning algorithms, the handcoded 
agent, and the random agent. An example will help 
illustrate how these numbers were computed. At the 
end of the learning run, the average reward for the box 
finder behavior using Q learning with clustering was 
0.16 (see Figure 4). The maximum and minimum re- 
ward values for the box finder are 3.0 and -1.0. Hence 
the percentage improvement for box finder from the 
lowest reward value is 

O-IL6 - (--l-O) )( 100 = 29% 
3.0 - (-1.0) 
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II 
DATA PROM REAL ROBOT ON LEARNING TO FIND BOXES 
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Figure 4: Data from robot on learning to find boxes 

Table 1: Ultimate performance at end of learning run 

The table indicates that the learning algorithms were 
fairly successful at learning to find and push boxes, 
and unwedge from stalled states - the ultimate per- 
formance is close to or better than the performance of 
the handcoded agent. The random agent does much 
worse in general, except at unwedging. Given some 
thought, this is not so surprising - if the robot is stuck 
against an obstacle, randomly thrashing around will 
very quickly unwedge it! 

Learning Box Pushing Monolithically 
Now we compare the subsumption approach with an 
agent who learns the box pushing task in its entirety 
without decomposing it - this was our initial unsuc- 
cessful approach to the problem. We created a mono- 
lithic learner by defining a single module that was ac- 
tive all the time. The single module was given a reward 
of 1 when it pushed a box - that is, it was bumped in 
two successive states while going forward, and was not 
stuck in the second state - and was given a reward of 
0 otherwise. Table 2 compares the subsumption ap- 
proach with the monolithic approach using as a metric 
the number of steps during which the robot was actu- 
ally pushing a box. The table shows the number of box 
pushing steps for the two approaches over a learning 
run of 2000 steps. 

Summarizing, analysis of the data shows that the 
learning algorithms were able to successfully learn the 
three separate behaviors in the box pushing task. Fur- 
thermore, the subsumption approach seems to be su- 
perior to the monolithic approach by at least a factor 

Technique Monolithic Subsumption 
Clustering 35 72 
Hamming 27 65 

Table 2: Number of steps a box was pushed over learn- 
ing run 

of two at learning the task. 

Limitations 
Our work currently suffers from a number of limita- 
tions. The box pushing task is quite simple as it in- 
volves only 5 actions and a state representation of 18 
bits. However, Lin [7] has recently shown that our ap- 
proach can be extended to a more complex task by 
explicitly teaching the robot. Algorithm 1 scales badly 
since it requires explicitly storing all possible states. 
Although Algorithm 2 overcomes this problem, it re- 
quires fine tuning several parameters to ensure that 
the clusters under each action are semantically mean- 
ingful. Algorithm 2 is also limited in that clusters once 
formed are never split (see [2] for a splitting algorithm 
that seems to be a dual of Algorithm 2). The number 
of box pushing steps in Table 2 is admittedly low. This 
is partly because boxes are very difficult to detect using 
sonar. Finally, our experiments have been limited to 
comparing the subsumption approach versus a simple 
monolithic approach. It is conceivable that modular 
controller architectures other than subsumption may 
yield similar computational benefits [14]. 

Our work draws extensively on previous work in ma- 
chine learning. Q learning was developed by Watkins 
[12]. Sutton [ll] h s owed how Q learning could be in- 
tegrated into a planning system. Lin [6] presents a de- 
tailed study of different algorithms using Q learning. 
Our work differs from these in that we are studying the 
integration of spatial and temporal credit assignment 
on a real robot. 

Our work also draws on earlier research on behavior- 
based robots using the subsumption architecture [I]. 
Our particular style of decomposition derives from 
Connell’s thesis [4]. The main difference is that we are 
studying how to automatically program such robots by 
having them learn new behaviors. 

Mitchell’s task [lo] of sliding a block using a fin- 
ger contact is similar to the box pushing task. His 
approach involves using a partial qualitative physics 
domain theory to explain failures in sliding the block, 
which are then generalized into rules. Our approach 
instead uses an inductive trial and error method to 
improve the robot’s performance at the task. Chris- 
tiansen et. al. [3] d escribe a similar trial and error 
inductive approach for learning action models in a tile 
sliding task. 
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Kaelbling [5] describes some work on using reinforce- 
ment learning in the context of a mobile robot. The 
task was to move towards a bright light. Wer task is 
much simpler than ours since a state consists of only 4 
bits, as opposed to 18 bits in our case. Another differ- 
ence is that we use the subsumption structure to speed 
up the learning. 

Maes and Brooks [S] describe a technique for learn- 
ing to coordinate existing behaviors in a behavior- 
based robot. Their work is complementary to our own. 
In our case new behaviors are learned assuming a pri- 
ority ordering to coordinate the behaviors. In their 
case, the behaviors are known, and the priority order- 
ing is learned. The reinforcement learning task in our 
case is more challenging since reward is a scalar vari- 
able, whereas in their case rewards are binary. Also, 
our techniques address the temporal credit assignment 
problem of propagating delayed rewards across actions. 
In their work, since rewards are available at every step 
in the learning, no temporal credit assignment is nec- 
essary. 

This paper attempts to empirically substantiate two 
claims. One, reinforcement learning is a viable ap- 
proach to learning individual modules in a behavior- 
based robot. Two, using a subsumption architecture is 
superior to using a one-part controller in reinforcement 
learning. We have provided experimental evidence that 
support these claims using a robot which successfully 
learns several component behaviors in a task involving 
pushing boxes. 

An especially acute problem for real robots is the 
limited number of trials that can be carried out. Rein- 
forcement learning, being a weak method, is often slow 
to converge in large search spaces. We have used a 
behavior-based architecture to speed up reinforcement 
learning by converting the problem of learning a com- 
plex non-reactive task into that of learning a simpler 
set of special-purpose reactive tasks. 

We plan to extend our work in several directions. 
We would like to explore approaches intermediate be- 
tween the monolithic and subsumption controllers as 
described in the paper. It would also be useful to learn 
both the priority ordering on behaviors and the action 
generation mechanism simultaneously. Finally, having 
the robot learn by “watching” a human do a task may 
enable our approach to scale to tasks more complex 
than box pushing [?I. 
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