
Automatic
ei

Sriclhar ahadevan an Jonathan Connell
IBM T.J. Watson Research Center, Box 704

Yorktown Heights, NY 10598
(sridhar@ibm.com and jhc@ibm.com)

Abstract
This paper describes a general approach for automat-
ically programming a behavior-based robot. New be-
haviors are learned by trial and error using a perfor-
mance feedback function as reinforcement. Two algo-
rithms for behavior learning are described that com-
bine techniques for propagating reinforcement values
temporally across actions and spatially across states.
A behavior-based robot called OBELIX (see Figure 1)
is described that learns several component behaviors in
an example task involving pushing boxes. An experi-
mental study using the robot suggests two conclusions.
One, the learning techniques are able to learn the in-
dividual behaviors, sometimes outperforming a hand-
coded program. Two, using a behavior-based architec-
ture is better than using a monolithic architecture for
learning the box pushing task.

Introduction
Behavior-based robots using the subsumption architec-
ture [l, 41 decompose an agent into a layered set of
task-achieving modules. Each module implements one
specific behavior, such as “

avoid

hitting anything

”

or
“

keep

following the wall

”

.

Thus, each module has to
solve only the part of the perception or planning prob-
lem that it requires. Furthermore, this approach nat-
urally lends itself to incremental improvement, since
new layers can be easily added on top of existing lay-
ers.

One problem with behavior-based robots is that
the component modules have to be laboriously pro-
grammed by a human designer. If new behaviors could
be learned, it would free the designer from needing a
deep understanding of the interactions between a par-
ticular robot and its task environment.

The problem of acquiring new behaviors has been
addressed by work in reinforcement learning [5, 11, 121.
This studies how an agent can choose an action based
on its current and past sensor values such that it
maximizes over time a reward function measuring the
agent

’

s

performance. Teaching robots using reinforce-
ment learning is attractive because specifying a reward
function for a task is often much easier than explicitly

Figure 1: The OBELIX robot examining a box

programming the robot to carry out the task. However,
previous work has been limited to situations where the
task is learned monolithically, that is as a single be-
havior.

This paper proposes instead using reinforcement
learning to automate the programming of a behavior-
based robot. Each behavior in such a robot is gener-
ally comprised of an applicability condition specifying
when it is appropriate, and an action generation mech-
anism specifying the best action in any state. Our ap-
proach assumes the robot is initially given the applica-
bility condition on each behavior, and a priority order-
ing to resolve conflicts among various behaviors. How-
ever, it does not depend on any particular set of sensors
or actions. The key idea is to learn an action gener-
ation mechanism for each behavior that maximizes a
fixed performance function over time.

Using a behavior-based architecture in reinforcement
learning has several advantages. Separate (and sim-
ple) reward functions can be written for each module,
allowing the robot to be rewarded more frequently.
This simplifies the temporal credit assignment prob-
lem since rewards have to be propagated across fewer
actions. The applicability function of each module pro-
vides a natural medium for encoding state history in-
formation. This also helps reduce the perceptual alias-

768 ROBOT LEARNING

From: AAAI-91 Proceedings. Copyright ©1991, AAAI (www.aaai.org). All rights reserved.

ing problem [13], since the same state may provoke
different reactions from the different modules.

BEIJ obot Vehicle
This section describes a robot that was used as a
testbed for the learning experiments. Figure 1 shows a
behavior-based robot called OBELIX that learns sev-
eral constituent behaviors in an example task of push-
ing boxes. The robot uses a 9600 baud Arlan 130 radio
link to continually send sensor data back to a worksta-
tion which in turn responds with motion commands.

The robot itself is built on a small, 12” diameter, 3-
wheeled base from RWI. For our experiments, we limit
the motion of the vehicle to either moving forward, or
turning left or right in place by two different angles (22
degrees or 45 degrees).

OBELIX’s primary sensory system is an array of 8
sonar units. Each sensor in the array has a field of view
of roughly 20 degrees and can see out to about 35 feet.
For the purposes of the experiments described here,
we use only two range bins. One extends from 9” to
18” (NEAR) d an another covers the distance between
18” and 30” (FAR). Th e individual sonar units are
arranged in an orthogonal pattern. There are 4 sonars
looking toward the front and 2 looking toward each
side.

There are also two secondary sources of sensory in-
formation. There is an infra-red (IR) detector which
faces straight forward and is tuned to a response dis-
tance of 4”. This sensor provides a special bit called
BUMP since it only comes on when something is right
against the front of the robot. The robot also moni-
tors the motor current being used for forward motion.
If this quantity exceeds some fixed threshold, another
special bit, STUCK, is turned on.

To summarize, 18 bits of information are extracted
from the sensors on the robot. Of these, 16 bits of
information come from the 8 sonar sensors (I bit from
the NEAR range and 1 bit from the FAR range). There
is also 1 bit of BUMP information, and 1 bit of STUCK
information. The 18 bits generate a total state space
of about a quarter million states. It is the job of the
learning algorithm to decide which of the 5 actions to
take in each of these states.

This section describes an example task of having a
robot push boxes across a room. One can view this as a
simplified version of a task carried out by a warehouse
robot, although clearly one would not use a round
robot to push square boxes! Conceptually, the box
pushing task involves three subtasks. First, the robot
needs to find potential boxes and discriminate them
from walls and other obstacles. Second, it needs to be
able to push a box across a room. Finally, it needs to
be able to recover from stalled situations where it has
either pushed a box to a corner, or has attempted to
push an immovable object like a wall. Our approach

will be to learn each of these subtasks as a distinct
reactive behavior. By reactive, we mean that we base
the control decision on only the currently perceived
sensory information.

Figure 2 illustrates the overall structure of a
behavior-based robot for the box pushing task. It also
depicts a priority network that imposes an ordering on
the three subtasks of the box pushing task. The prior-
ity network is specified by “suppressor” nodes shown
as circles containing the letter “S”. The semantics of
a suppressor node is that commands injected from the
top of the node take precedence over those injected
horizontally from the left side. Thus, Figure 2 shows
that the unwedging behavior supersedes the pushing
behavior, and that both of these in turn supersede the
finding behavior.

Figure 2: Modules in a Box Pushing Robot

ehavior 1:
In order to push a box, OBELIX has to first find one.
At this point we need to define what constitutes a
“box” . The constraints on a box are that the robot
should be able to physically push it, and be able to
distinguish it from obstacles such as walls. In practice,
we use empty rectangular paper cartons about a cubic
foot in volume.

One way to encourage the robot to find boxes is to re-
ward the robot whenever the NEAR sensor bits on the
front sonars turn on. This encourages the box finder to
go toward objects. We use a disjunction of the NEAR
state bits of the central front facing sonars on the robot
as a “matched filter” for recognizing boxes. If the robot
went forward, and turned these bits on, the robot is
“rewarded” by +3; if these bits are off, the robot is
“punished” by -1; the default reward is 0. The box
finder is always applicable; however, since its priority
is the lowest, it controls the robot only when the other
behaviors are inapplicable.

ehavior 2:
Once OBELIX has found a box, it needs to push it
until the box is wedged against an immovable obstacle

MAHADEVAN & CONNELL 769

(like a wall). What makes this task difficult is that
boxes tend to rotate if they are not pushed with a
force directed through their center of drag. OBELIX
has to learn to keep the box centered in its field of
view, by turning whenever the box rotates to one side
of the robot. The robot gets rewarded by +1 whenever
it continues to be bumped and going forward. It gets
punished by -3 whenever it loses contact with the box.

Intuitively, the box pushing behavior should be ap-
plicable whenever OBELIX is actively pushing a box,
and should not be applicable otherwise. One prob-
lem with such a criterion is that the moment OBELIX
loses contact with a box, the behavior is turned off, and
OBELIX has no opportunity to correct its mistakes. A
better scheme in practice is to allow a behavior to con-
tinue to be applicable for a fixed number of time steps
after the applicability predicate (which first turned it
on) ceases to be true. In particular, the box pushing
behavior continues to be applicable 5 time units af-
ter OBELIX has lost contact with a box. This allows
some time for it to try to recover and push the box
once again.

Behavior 3: Getting Unwedged
Given that OBELIX is learning to find and push boxes
in a cluttered laboratory environment, it is very likely
that it will bump into walls and other immovable ob-
stacles and become stalled or wedged. Pushing a box
into a wall will also cause a stalled state. A separate
behavior is dedicated in OBELIX to extricate it from
such situations. The basic idea is for OBELIX to turn
around sufficiently so that it can begin going forward
again. Even though this task seems simple, it turns
out to be quite hard. OBELIX can easily learn to turn
once it gets into a stalled situation. It does not readily
learn to turn in the right direction, and by the right
amount.

The unwedging behavior is rewarded by +l when the
robot is no longer stalled, and is able to go forward once
again. It is punished by -3 if the robot continues to be
stalled. The unwedging behavior is deemed applicable
any time the robot is stalled. As in the case of the box
pushing behavior, the unwedging behavior continues
to be applicable for 5 time steps after the robot is no
longer stalled.

earning Algorithms
This section briefly describes two learning algorithms
that we have implemented on OBELIX. They combine
a well known learning algorithm for temporal credit as-
signment, Q learning [12], with two different structural
credit assignment techniques: weighted Hamming dis-
tance and statistical clustering. The goal of the learn-
ing is to acquire an action generation mechanism for
each module that maximizes the reward obtained by
the module over time. A much more detailed descrip-
tion of the two algorithms is given in [9].

770 ROBOT LEARNING

Learning
Q learning [I2] uses a single utility function &(z, a)
across states (2) and actions (a) to evaluate both ac-
tions and states. By definition, &(z, a) = P + yE(y),
where r is immediate payoff or reward, and E(y) is the
utility of the state y resulting from the action. y is a
discount parameter between 0 and 1. In turn, E(y) =
maximum Q(y, a) over all actions c4. During learning,
the stored utility values Q(z, o) have not yet converged
to their final value (i.e. to r + yE(y)). Thus, the dif-
ference between the stored values and their final values
gives the error in the current stored value. In particu-
lar, Q learning uses the following rule to update stored
utility values.

9(x, 4 + 9(x, 4 + P(r + YE(Y) - Qb, 4)
Thus, the new Q value is the sum of the old one and

the error term multiplied by a parameter p, between 0
and 1. The parameter fl controls the rate at which the
error in the current utility value is corrected.

Weighted Hamming Distance
To become better at box pushing, OBELIX needs
to propagate rewards across states, so that “similar”
states provoke the same response from it. The simi-
larity metric used in the first algorithm is as follows.
First, the state description is reduced from 18 to 9
bits by disjoining some neighboring sonar bits. Then,
the reduced states are compared based on the Mam-
ming distance between them. The Hamming distance
between any two states is simply the number of state
bits that are different between them. However, in our
case, not all bits are equally important. Since it is
important to never generalize across states in which
BUMP or STUCK differ, these carry a higher weight
than the other state bits. In particular, BUMP and
STUCK carry a weight of 5, the near sonar bits carry
a weight of 2, and the other bits carry a default weight
of 1. With these weights, we define two states as be-
ing distinct if the weighted Hamming distance between
them is greater than 2.

Statistical Clustering
The second algorithm uses statistical clustering to
propagate reward values across states. Using this algo-
rithm, the robot learns a set of clusters for each action
that specify the utility of doing the action in particular
classes of states. More formally, a cluster is a vector of
probabilities < pi, pn >, where each pi is the prob-
ability of the ith state bit being a 1. Each cluster has
associated with it a Q value indicating its worth. Clus-
ters are extracted from instances of states, actions, and
rewards that are generated by the robot exploring its
task environment.

A state s is considered an instance of a cluster c
if two conditions are satisfied. One, the probability
P(s E c) - computed by multiplying the probabilities

pi or (1 -pi), depending on whether the ith bit of state
s is a 1 or a 0 - should be greater than some threshold
c. Two, the absolute difference between the Q values
of the state and the cluster should be less than some
threshold S. If a state matches a cluster, it is merged
into the cluster by updating the cluster probabilities.

If a state does not match any of the existing clusters,
a new cluster is created with the state being its only in-
stance. Alternatively, two clusters can be merged into
one “supercluster” if the Euclidean “distance” between
the clusters (treating the clusters as points in n dimen-
sional probability space) is less than some threshold p,
and the absolute difference between their Q values is
less than S.

Act ion Generat ion

The best action a to perform in a given state x is the
one that has the highest utility Q(x, a). The first algo-
rithm stores an array Q(x, a) exhaustively specifying
the utilities of doing any action a in any state x. In
contrast, the second algorithm computes the utility as

Q(x,a) 1 ,w. - The numerator is the sum

of the Q values of the clusters stored under an action,
weighted by the probability of state x matching a clus-
ter c. The denominator, which is a normalization fac-
tor, is the sum of the match probabilities of the state
z over the clusters associated with action a.

Summary of Algorithms 1 and 2

Figure 3 combines the description of the two algo-
rithms. Step 2b requires some explanation. In order
to ensure the convergence of the Q values, it is impor-
tant that every state be sampled periodically. This is
ensured by taking a random action some of the time.

1. Initialization: (For algorithm 1, create an array
Q(x, a) whose initial entries are 0.) (For algorithm
2, initialize the clusters under each action a to
NIL, and fix c, S, and p.)
2. Do the following steps forever:
a. Observe the current world state s.
b. 90% of the time, choose an action a that
maximizes Q(s, u). Else choose a random action.
c. Carry out a. Let the reward obtained be T.
d. Update Q(s Q via the Q learning update rule. ,)
e. (For algorithm 1, also update Q(s’, u) for all s’
s.t. weighted-humming-distunce(s, s’) 5 2.)
(For algorithm 2, if 3 a cluster c under a which
matches s, merge s into c. Else create a new
cluster c’ whose only instance is s. Merge
existing clusters under a if possible.)

Figure 3: The two learning algorithms

This section describes a detailed experimental study
evaluating the performance of the two learning algo-
rithms described above. Mainly, we are interested in
determining (i) how well the robot learns each indi-
vidual behavior, and (ii) the effect of decomposing
the overall task into a set of subsumption modules on
learning.

The first question can be answered by measuring the
improvement in performance of each individual behav-
ior as a function of the learning. The second ques-
tion can be answered by comparing the improvement
in overall performance obtained by learning each be-
havior separately with that obtained by learning the
box pushing task as a single monolithic control sys-
tem.

Learning Each ehavior Separately
For the first set of experimental results, we focus on
learning each behavior separately. Figure 4 presents
data collected using the robot on learning to find
boxes using four different algorithms: Q learning with
weighted Hamming, Q learning with statistical clus-
tering, a handcoded agent, and a random agent. The
graph plots the average value of the reward obtained
so far by the finder module at various points along
the learning run. That is, the vertical axis represents
the sum of all rewards received by the module divided
by the number of steps that the module has been in
control of the robot. The horizontal axis represents
the percentage of the learning run of 2000 steps that
has elapsed. Note that each module is active only for
some fraction of these steps. The graph shows that
the two learning algorithms improve steadily over the
learning run, and do substantially better than the ran-
dom agent but not as well as the handcoded agent.
The handcoded and random agents show some perfor-
mance variations over the learning run partially due to
the fact that the robot takes a random action 10% of
the time.

We have similarly analyzed the performance of the
learning algorithms on the other two behaviors, push-
ing and unwedging. However, space does not permit
showing these graphs (again, a more complete treat-
ment is given in [9]). Instead, we summarize our results
by extracting some quantitative information from the
data. Table 1 compares the “ultimate performance”
obtained using the learning algorithms, the handcoded
agent, and the random agent. An example will help
illustrate how these numbers were computed. At the
end of the learning run, the average reward for the box
finder behavior using Q learning with clustering was
0.16 (see Figure 4). The maximum and minimum re-
ward values for the box finder are 3.0 and -1.0. Hence
the percentage improvement for box finder from the
lowest reward value is

O-IL6 - (--l-O))(100 = 29%
3.0 - (-1.0)

MAHADEVAN & CONNELL 771

&a7

II
DATA PROM REAL ROBOT ON LEARNING TO FIND BOXES

-.a7 -.835 \J- . .--..~----,^.“--.~.---.~.~-.--. -,.B v __-_.,.,.,.--.._.0--------- s..---.-.” 4
Figure 4: Data from robot on learning to find boxes

Table 1: Ultimate performance at end of learning run

The table indicates that the learning algorithms were
fairly successful at learning to find and push boxes,
and unwedge from stalled states - the ultimate per-
formance is close to or better than the performance of
the handcoded agent. The random agent does much
worse in general, except at unwedging. Given some
thought, this is not so surprising - if the robot is stuck
against an obstacle, randomly thrashing around will
very quickly unwedge it!

Learning Box Pushing Monolithically
Now we compare the subsumption approach with an
agent who learns the box pushing task in its entirety
without decomposing it - this was our initial unsuc-
cessful approach to the problem. We created a mono-
lithic learner by defining a single module that was ac-
tive all the time. The single module was given a reward
of 1 when it pushed a box - that is, it was bumped in
two successive states while going forward, and was not
stuck in the second state - and was given a reward of
0 otherwise. Table 2 compares the subsumption ap-
proach with the monolithic approach using as a metric
the number of steps during which the robot was actu-
ally pushing a box. The table shows the number of box
pushing steps for the two approaches over a learning
run of 2000 steps.

Summarizing, analysis of the data shows that the
learning algorithms were able to successfully learn the
three separate behaviors in the box pushing task. Fur-
thermore, the subsumption approach seems to be su-
perior to the monolithic approach by at least a factor

Technique Monolithic Subsumption
Clustering 35 72
Hamming 27 65

Table 2: Number of steps a box was pushed over learn-
ing run

of two at learning the task.

Limitations
Our work currently suffers from a number of limita-
tions. The box pushing task is quite simple as it in-
volves only 5 actions and a state representation of 18
bits. However, Lin [7] has recently shown that our ap-
proach can be extended to a more complex task by
explicitly teaching the robot. Algorithm 1 scales badly
since it requires explicitly storing all possible states.
Although Algorithm 2 overcomes this problem, it re-
quires fine tuning several parameters to ensure that
the clusters under each action are semantically mean-
ingful. Algorithm 2 is also limited in that clusters once
formed are never split (see [2] for a splitting algorithm
that seems to be a dual of Algorithm 2). The number
of box pushing steps in Table 2 is admittedly low. This
is partly because boxes are very difficult to detect using
sonar. Finally, our experiments have been limited to
comparing the subsumption approach versus a simple
monolithic approach. It is conceivable that modular
controller architectures other than subsumption may
yield similar computational benefits [14].

Our work draws extensively on previous work in ma-
chine learning. Q learning was developed by Watkins
[12]. Sutton [ll] h s owed how Q learning could be in-
tegrated into a planning system. Lin [6] presents a de-
tailed study of different algorithms using Q learning.
Our work differs from these in that we are studying the
integration of spatial and temporal credit assignment
on a real robot.

Our work also draws on earlier research on behavior-
based robots using the subsumption architecture [I].
Our particular style of decomposition derives from
Connell’s thesis [4]. The main difference is that we are
studying how to automatically program such robots by
having them learn new behaviors.

Mitchell’s task [lo] of sliding a block using a fin-
ger contact is similar to the box pushing task. His
approach involves using a partial qualitative physics
domain theory to explain failures in sliding the block,
which are then generalized into rules. Our approach
instead uses an inductive trial and error method to
improve the robot’s performance at the task. Chris-
tiansen et. al. [3] d escribe a similar trial and error
inductive approach for learning action models in a tile
sliding task.

772 ROBOT LEARNING

Kaelbling [5] describes some work on using reinforce-
ment learning in the context of a mobile robot. The
task was to move towards a bright light. Wer task is
much simpler than ours since a state consists of only 4
bits, as opposed to 18 bits in our case. Another differ-
ence is that we use the subsumption structure to speed
up the learning.

Maes and Brooks [S] describe a technique for learn-
ing to coordinate existing behaviors in a behavior-
based robot. Their work is complementary to our own.
In our case new behaviors are learned assuming a pri-
ority ordering to coordinate the behaviors. In their
case, the behaviors are known, and the priority order-
ing is learned. The reinforcement learning task in our
case is more challenging since reward is a scalar vari-
able, whereas in their case rewards are binary. Also,
our techniques address the temporal credit assignment
problem of propagating delayed rewards across actions.
In their work, since rewards are available at every step
in the learning, no temporal credit assignment is nec-
essary.

This paper attempts to empirically substantiate two
claims. One, reinforcement learning is a viable ap-
proach to learning individual modules in a behavior-
based robot. Two, using a subsumption architecture is
superior to using a one-part controller in reinforcement
learning. We have provided experimental evidence that
support these claims using a robot which successfully
learns several component behaviors in a task involving
pushing boxes.

An especially acute problem for real robots is the
limited number of trials that can be carried out. Rein-
forcement learning, being a weak method, is often slow
to converge in large search spaces. We have used a
behavior-based architecture to speed up reinforcement
learning by converting the problem of learning a com-
plex non-reactive task into that of learning a simpler
set of special-purpose reactive tasks.

We plan to extend our work in several directions.
We would like to explore approaches intermediate be-
tween the monolithic and subsumption controllers as
described in the paper. It would also be useful to learn
both the priority ordering on behaviors and the action
generation mechanism simultaneously. Finally, having
the robot learn by “watching” a human do a task may
enable our approach to scale to tasks more complex
than box pushing [?I.

eferences
[l] R. Brooks. A robust layered control system for

a mobile robot. IEEE Journal of Robotics and
Automation, 2(l), 1986.

[2] D. Chapman and L. Kaelbling. Learning from de-
layed reinforcement in a complex domain. Tech-
nical Report TR-90-11, Teleos Research, 1990.

[3] A. Christiansen, T. Mason, and T. Mitchell.
Learning reliable manipulation strategies without
initial physical models. In Proceedings of the IEEE
Conference on Robotics and Automation, pages
1224-1230. Morgan Kaufmann, 1990.

[4] J . Connell. Minimalist Mobile Robotics: A
Colony-style Architecture for an Artificial Crea-
ture. Academic Press, 1990. Also available as
MIT AI TR 1151.

[5] L. Kaelbling. L earning in Embedded Systems. BhD
thesis, Stanford University., 1990.

[6] L. Lin. Self-improving reactive agents: Case stud-
ies of reinforcement learning frameworks. Tech-
nical Report CMU-CS-90-109, Carnegie-Mellon
University., 1990.

[7] L. Lin. Programming robots using reinforcement
learning and teaching. In Proceedings of the Ninth
AAAI, 1991. To appear.

[8] P. Maes and R. Brooks. Learning to coordinate
behaviors. In Proceedings of the Eighth AAAI,
pages 796-802. Morgan Kaufmann, 1990.

PI s. ahadevan and J. Connell. Automatic pro-
gramming of behavior-based robots using rein-
forcement learning. Technical Report RC 16359,
IBM, 1990.

[lo] T. Mitchell. Towards a learning robot. Tech-
nical Report CMU-CS-89-106, Carnegie-Mellon
University., 1989.

[ll] R. Sutton. Integrated architectures for learning,
planning, and reacting based on approximating
dynamic programming. In Proceedings of the Sev-
enth International Conference on Machine Learn-
ing, pages 216-224. Morgan Kaufmann, 1990.

[12] C. Watkins. Learning from Belayed Rewards. PhD
thesis, King’s College, 1989.

[13] S. Whitehead and D. Ballard. Active percep-
tion and reinforcement learning. In Proceedings
of the Seventh International Conference on Ma-
chine Learning, pages 179-188. Morgan Kauf-
mann, 1990.

[14] L. Wixson and D. Ballard. Learning to find ob-
jects. Technical report, Univ. of Rochester, 1991.
In preparation.

MAHADEVAN & CONNELL 773

