CHAPTER

3

INSTANCE-BASED
LEARNING

In contrast to learning methods that construct a general, explicit description of
the target function when training examples are provided, instance-based learning
methods simply store the training examples. Generalizing beyond these examples
is postponed until a new instance must be classified. Each time a new query
instance is encountered, its relationship to the previously stored examples is ex-
amined in order to assign a target function value for the new instance. Instance-
based learning includes nearest neighbor and locally weighted regression meth-
ods that assume instances can be represented as points in a Euclidean space. It
also includes case-based reasoning methods that use more complex, symbolic rep-
resentations for instances. Instance-based methods are sometimes referred to as
“lazy” learning methods because they delay processing until a new instance must
be classified. A key advantage of this kind of delayed, or lazy, learning is
that instead of estimating the target function once for the entire instance space,
these methods can estimate it locally and differently for each new instance to be
classified. ’

8.1 INTRODUCTION

Instance-based learning methods such as nearest neighbor and locally weighted re-
gression are conceptually straightforward approaches to approximating real-valued
or discrete-valued target functions. Learning in these algorithms consists of simply
storing the presented training data. When a new query instance is encountered, a
set of similar related instances is retrieved from memory and used to classify the

230




CHAPTER 8 INSTANCE-BASED LEARNING 231

new query instance. One key difference between these approaches and the meth-
ods discussed in other chapters is that instance-based approaches can construct
a different approximation to the target function for each distinct query instance
that must be classified. In fact, many techniques construct only a local approxi-
mation to the target function that applies in the neighborhood of the new query
instance, and never construct an approximation designed to perform well over the
entire instance space. This has significant advantages when the target function is
very complex, but can still be described by a collection of less complex local
approximations.

Instance-based methods can also use more complex, symbolic representa-
tions for instances. In case-based learning, instances are represented in this fashion
and the process for identifying “neighboring” instances is elaborated accordingly.
Case-based reasoning has been applied to tasks such as storing and reusing past
experience at a help desk, reasoning about legal cases by referring to previous
cases, and solving complex scheduling problems by reusing relevant portions of
previously solved problems. :

One disadvantage of instance-based approaches is that the cost of classifying
new instances can be high. This is due to the fact that nearly all computation
takes place at classification time rather than when the training examples are first
encountered. Therefore, techniques for efficiently indexing training examples are
a significant practical issue in reducing the computation required at query time.
A second disadvantage to many instance-based approaches, especially nearest-
neighbor approaches, is that they typically consider all attributes of the instances
when attempting to retrieve similar training examples from memory. If the target
concept depends on only a few of the many available attributes, then the instances
that are truly most “similar” may well be a large distance apart.

In the next section we introduce the k-NEAREST NEIGHBOR learning algo-
rithm, including several variants of this widely-used approach. The subsequent
section discusses locally weighted regression, a learning method that constructs
local approximations to the target function and that can be viewed as a general-
ization of k-NEAREST NEIGHBOR algorithms. We then describe radial basis function
networks, which provide an interesting bridge between instance-based and neural
network learning algorithms. The next section discusses case-based reasoning, an
instance-based approach that employs symbolic representations and knowledge-
based inference. This section includes an example application of case-based rea-
soning to a problem in engineering design. Finally, we discuss the fundamen-
tal differences in capabilities that distinguish lazy learning methods discussed in
Lhis chapter from eager learning methods discussed in the other chapters of this

ook.

8.2 k-NEAREST NEIGHBOR LEARNING

The most basic instance-based method is the k-NEAREST NEIGHBOR algorithm. This
algorithm assumes all instances correspond to points in the n-dimensional space
", The nearest neighbors of an instance are defined in terms of the standard



232 MACHINE LEARNING

Euclidean distance. More precisely, let an arbitrary instance x be described by the
feature vector

{a1(x), a2(x), ... an(x))

where a, (x) denotes the value of the rth attribute of instance x. Then the distance
between two instances x; and x; is defined to be d(x;, x;), where

A, x) = | ) (@ () — ar(x)))?
r=1

In nearest-neighbor learning the target function may be either discrete-valued
or real-valued. Let us first consider learning discrete-valued target functions of the
form f : R* — V, where V is the finite set {vy, ...v;}. The k-NEAREST NEIGHBOR
algorithm for approximating a discrete-valued target function is given in Table 8.1.
As shown there, the value f(x,) returned by this algorithm as its estimate of f(x,)
is just the most common value of f among the k training examples nearest to
x,. If we choose k = 1, then the 1-NEAREST NEIGHBOR algorithm assigns to f (xg)
the value f(x;) where x; is the training instance nearest to x,. For larger values
of k, the algorithm assigns the most common value among the k nearest training
examples.

Figure 8.1 illustrates the operation of the k-NEAREST NEIGHBOR algorithm for
the case where the instances are points in a two-dimensional space and where the
target function is boolean valued. The positive and negative training examples are
shown by “+” and “—” respectively. A query point x, is shown as well. Note the
1-NEAREST NEIGHBOR algorithm classifies x, as a positive example in this figure,
whereas the 5-NEAREST NEIGHBOR algorithm classifies it as a negative example.

What is the nature of the hypothesis space H implicitly considered by the
k-NEAREST NEIGHBOR algorithm? Note the k-NEAREST NEIGHBOR algorithm never
forms an explicit general hypothesis f regarding the target function f. It simply
computes the classification of each new query instance as needed. Nevertheless,

Training algorithm:
e For each training example (x, f(x)), add the example to the list trraining_examples

Classification algorithm:
o Given a query instance x, to be classified,
e Let x;...x; denote the k instances from training_ examples that are nearest to x,
e Return

k
Flxg) <« argmax Y~ 5(v, £(x)

eV o

where 8(a, b) = 1 if a = b and where §(a, b) = 0 otherwise.

TABLE 8.1
The k-NEAREST NEIGHBOR algorithm for approximating a discrete-valued function f : %" — V.



CHAPTER 8 INSTANCE-BASED LEARNING 233

FIGURE 8.1

k-NEAREST NEIGHBOR. A set of positive and negative training examples is shown on the left, along
with a query instance x, to be classified. The 1-NEAREST NEIGHBOR algorithm classifies x, positive,
whereas 5-NEAREST NEIGHBOR classifies it as negative. On the right is the decision surface induced
by the 1-NEAREST NEIGHBOR algorithm for a typical set of training examples. The convex polygon
surrounding each training example indicates the region of instance space closest to that point (i.c.,
the instances for which the 1-NEAREST NEIGHBOR algorithm will assign the classification belonging
to that training example).

we can still ask what the implicit general function is, or what classifications
would be assigned if we were to hold the training examples constant and query
the algorithm with every possible instance in X. The diagram on the right side
of Figure 8.1 shows the shape of this decision surface induced by 1-NEAREST
NEIGHBOR over the entire instance space. The decision surface is a combination of
convex polyhedra surrounding each of the training examples. For every training
example, the polyhedron indicates the set of query points whose classification
will be completely determined by that training example. Query points outside the
polyhedron are closer to some other training example. This kind of diagram is
often called the Voronoi diagram of the set of training examples.

The k-NEAresT NEIGHBOR algorithm is easily adapted to approximating
continuous-valued target functions. To accomplish this, we have the algorithm
calculate the mean value of the k nearest training examples rather than calculate
their most common value. More precisely, to approximate a real-valued target
function f : ®* — R we replace the final line of the above algorithm by the line

k .
fx) < Zizt ) (8.1)

k

8.2.1 Distance-Weighted NEAREST NEIGHBOR Algorithm

One obvious refinement to the k-NEAREST NEIGHBOR algorithm is to weight the con-
tribution of each of the k neighbors according to their distance to the query point
X4, giving greater weight to closer neighbors. For example, in the algorithm of
Table 8.1, which approximates discrete-valued target functions, we might weight
the vote of each neighbor according to the inverse square of its distance from x,.



234 MACHINE LEARNING

This can be accomplished by replacing the final line of the algorithm by

k
f(xg) < argmax D wis, f(x)) 8.2)
LG i=l1
where
1

= d(xq, x;)?

To accommodate the case where the query point x, exactly matches one of the
training instances x; and the denominator d(x,, x:)? is therefore zero, we assign
f (xg) to be f(x;) in this case. If there are several such training examples, we
assign the majority classification among them.

We can distance-weight the instances for real-valued target functions in a
similar fashion, replacing the final line of the algorithm in this case by

k
izt wif () 8.4)

D1 Wi :
where w; is as defined in Equation (8.3). Note the denominator in Equation (8.4) is
a constant that normalizes the contributions of the various weights (e.g., it assures
that if f(x;) = ¢ for all training examples, then f(x;) < ¢ as well).

Note all of the above variants of the k-NEAREST NEIGHBOR algorithm consider
only the k nearest neighbors to classify the query point. Once we add distance
weighting, there is really no harm in allowing all training examples to have an
influence on the classification of the x,, because very distant examples will have
very little effect on f (x4). The only disadvantage of considering all examples is
that our classifier will run more slowly. If all training examples are considered
when classifying a new query instance, we call the algorithm a global method.
If only the nearest training examples are considered, we call it a local method.
When the rule in Equation (8.4) is applied as a global method, using all training
examples, it is known as Shepard’s method (Shepard 1968).

(8.3)

w;

fx) «

8.2.2 Remarks on k-NEAREST NEIGHBOR Algorithm

The distance-weighted k-NEAREST NEIGHBOR algorithm is a highly effective induc-
tive inference. method for many practical problems. It is robust to noisy training
data and quite effective when it is provided a sufficiently large set of training
data. Note that by taking the weighted average of the k neighbors nearest to the
query point, it can smooth out the impact of isolated noisy training examples.

What is the inductive bias of k-NEAREST NEIGHBOR? The basis for classitying
new query points is easily understood based on the diagrams in Figure 8.1. The
inductive bias corresponds to an assumption that the classification of an instance
xg will be most similar to the classification of other instances that are nearby in
Euclidean distance.

One practical issue in applying k-NEAREST NEIGHBOR algorithms is that the
distance between instances is calculated based on all attributes of the. instance



CHAPTER 8 INSTANCE-BASED LEARNING 235

(i.e., on all axes in the Euclidean space containing the instances). This lies in
contrast to methods such as rule and decision tree learning systems that select
only a subset of the instance attributes when forming the hypothesis. To see the
effect of this policy, consider applying k-NEAREST NEIGHBOR to a problem in which
each instance is described by 20 attributes, but where only 2 of these attributes
are relevant to determining the classification for the particular target function. In
this case, instances that have identical values for the 2 relevant attributes may
nevertheless be distant from one another in the 20-dimensional instance space.
As a result, the similarity metric used by k-NEaREST NEIGHBOR—depending on
all 20 attributes—will be misleading. The distance between neighbors will be
dominated by the large number of irrelevant attributes. This difficulty, which
arises when many irrelevant attributes are present, is sometimes referred to as the
curse of dimensionality. Nearest-neighbor approaches are especially sensitive to
this problem.

One interesting approach to overcoming this problem is to weight each
attribute differently when calculating the distance between two instances. This
corresponds to stretching the axes in the Euclidean space, shortening the axes that
correspond to less relevant attributes, and lengthening the axes that correspond
to more relevant attributes. The amount by which each axis should be stretched
can be determined automatically using a cross-validation approach. To see how,
first note that we wish to stretch (multiply) the jth axis by some factor z;, where
the values z;...z, are chosen to minimize the true classification error of the
learning algorithm. Second, note that this true error can be estimated using cross-
validation. Hence, one algorithm is to select a random subset of the available
data to use as training examples, then determine the values of z; ...z, that lead
to the minimum error in classifying the remaining examples. By repeating this
process multiple times the estimate for these weighting factors can be made more
accurate. This process of stretching the axes in order to optimize the performance
of k-NEAREST NEIGHBOR provides a mechanism for suppressing the impact of
irrelevant attributes.

An even more drastic alternative is to completely eliminate the least relevant
attributes from the instance space. This is equivalent to setting some of the z;
scaling factors to zero. Moore and Lee (1994) discuss efficient cross-validation
methods for selecting relevant subsets of the attributes for k<-NEAREST NEIGHBOR
algorithms. In particular, they explore methods based on leave-one-out cross-
validation, in which the set of m training instances is repeatedly divided into a
training set of size m—1 and test set of size 1, in all possible ways. This leave-one-
out approach is easily implemented in k-NEAREST NEIGHBOR algorithms because
no additional training effort is required each time the training set is redefined.
Note both of the above approaches can be seen as stretching each axis by some
constant factor. Alternatively, we could stretch each axis by a value that varies over
the instance space. However, as we increase the number of degrees of freedom
available to the algorithm for redefining its distance metric in such a fashion, we
also increase the risk of overfitting. Therefore, the approach of locally stretching
the axes is much less common.



236 MACHINE LEARNING

One additional practical issue in applying k-NEAREST NEIGHBOR is efficient
memory indexing. Because this algorithm delays all processing until a new query
is received, significant computation can be required to process each new query.
Various methods have been developed for indexing the stored training examples so
that the nearest neighbors can be identified more efficiently at some additional cost
in memory. One such indexing method is the kd-tree (Bentley 1975; Friedman
et al. 1977), in which instances are stored at the leaves of a tree, with nearby
instances stored at the same or nearby nodes. The internal nodes of the tree sort
the new query x, to the relevant leaf by testing selected attributes of x,.

8.2.3 A Note on Terminology

Much of the literature on nearest-neighbor methods and weighted local regression
uses a terminology that has arisen from the field of statistical pattern recognition.
In reading that literature, it is useful to know the following terms:

e Regression means approximating a real-valued target function.
e Residual is the error f(x) — f(x) in approximating the target function.

o Kernel function is the function of distance that is used to determine the
weight of each training example. In other words, the kernel function is the
function X such that w; = K(d(x;, xg)).

8.3 LOCALLY WEIGHTED REGRESSION

The nearest-neighbor approaches described in the previous section can be thought
of as approximating the target function f(x) at the single query point x = x,.
Locally weighted regression is a generalization of this approach. It constructs an
explicit approximation to f over a local region surrounding x,. Locally weighted
regression uses nearby or distance-weighted training examples to form this local
approximation to f. For example, we might approximate the target function in
the neighborhood surrounding x, using a linear function, a quadratic function,
a multilayer neural network, or some other functional form. The phrase “locally
weighted regression” is called local because the function is approximated based
only on data near the query point, weighted because the contribution of each
training example is weighted by its distance from the query point, and regression
because this is the term used widely in the statistical learning community for the
problem of approximating real-valued functions.

Given a new query instance x,, the general approach in locally weighted
regression is to construct an approximation f that fits the training examples in the
neighborhood surrounding x,. This approximation is then used to calculate the
value f (x4), which is output as the estimated target value for the query instance.
The description of £ may then be deleted, because a different local approximation
will be calculated for each distinct query instance.

-



CHAPTER 8 INSTANCE-BASED LEARNING 237

8.3.1 Locally Weighted Linear Regression

Let us consider the case of locally weighted regression in which the target function
f is approximated near x, using a linear function of the form

Fx) = wo + wiar(x) + - - - + waa(x)

As before, a;(x) denotes the value of the ith attribute of the instance x.

Recall that in Chapter 4 we discussed methods such as gradient descent to
find the coefficients wy...w, to minimize the error in fitting such linear func-
tions to a given set of training examples. In that chapter we were interested in
a global approximation to the target function. Therefore, we derived methods to
choose weights that minimize the squared error summed over the set D of training
examples

E= % > @ - f) 8.5)

xeD

which led us to the gradient descent training rule

Aw; = 1) (f&x) — f())a;(x) (8.6)
xeD
where n is a constant learning rate, and where the training rule has been re-
expressed from the notation of Chapter 4 to fit our current notation (i.e., t = f(x),
o— f(x), and x; — a;(x)).

How shall we modify this procedure to derive a local approximation rather
than a global one? The simple way is to redefine the error criterion E to emphasize
fitting the local training examples. Three possible criteria are given below. Note
we write the error E(x,) to emphasize the fact that now the error is being defined
as a function of the query point x,.

1. Minimize the squared error over just the k£ nearest neighbors:

> (f@® - f@)

x€ k nearest nbrs of x,

1

E = —
1 (xq) D)
2. Minimize the squared error over the entire set D of training examples, while

weighting the error of each training example by some decreasing function
K of its distance from x,:

. 1 "
Ex(x) = 5 3 (F() — fx)? Kd(xg, %)

xeD

3. Combine 1 and 2:

Es(x) = 3 () = F00)? K(d(xg, x))

x€ k nearest nbrs of x,

N =

Criterion two is perhaps the most esthetically pleasing because it allows
every training example to have an impact on the classification of x,. However,



238 MACHINE LEARNING

this approach requires computation that grows linearly with the number of training
examples. Criterion three is a good approximation to criterion two and has the
advantage that computational cost is independent of the total number of training
examples; its cost depends only on the number k of neighbors considered.

If we choose criterion three above and rederive the gradient descent rule
using the same style of argument as in Chapter 4, we obtain the following training
rule (see Exercise 8.1):

Aw; =17 > K(d(xg, ) (f&x) = f(x) ax) 87

x€ k nearest nbrs of x;

Notice the only differences between this new rule and the rule given by Equa-
tion (8.6) are that the contribution of instance x to the weight update is now
multiplied by the distance penalty K (d(x,, x)), and that the error is summed over
only the k nearest training examples. In fact, if we are fitting a linear function
to a fixed set of training examples, then methods much more efficient than gra-
dient descent are available to directly solve for the desired coefficients wy ... w,.
Atkeson et al. (1997a) and Bishop (1995) survey several such methods.

8.3.2 Remarks on Locally Weighted Regression

Above we considered using a linear function to approximate f in the neigh-
borhood of the query instance x,. The literature on locally weighted regression
contains a broad range of alternative methods for distance weighting the training
examples, and a range of methods for locally approximating the target function. In
most cases, the target function is approximated by a constant, linear, or quadratic
function. More complex functional forms are not often found because (1) the cost
of fitting more complex functions for each query instance is prohibitively high,
and (2) these simple approximations model the target function quite well over a
sufficiently small subregion of the instance space.

8.4 RADIAL BASIS FUNCTIONS

One approach to function approximation that is closely related to distance-weighted
regression and also to artificial neural networks is learning with radial basis func-
tions (Powell 1987; Broomhead and Lowe 1988; Moody and Darken 1989). In
this approach, the learned hypothesis is a function of the form

k
F@ =wo+ ) wuKu(d(xy, X)) 8.8)
u=1

where each x, is an instance from X and where the kernel function K,(d (x4, x))
is defined so that it decreases as the distance d(x,, x) increases. Here & is a user-
provided constant that specifies the number of kernel functions to be included.
Even though f(x) is a global approximation to f(x), the contribution from each
of the K, (d(x,, x)) terms is localized to a region nearby the point x,. It is common



