
CHAPTER

GENETIC
ALGORITHMS

Genetic algorithms provide an approach to learning that is based loosely on simulated
evolution. Hypotheses are often described by bit strings whose interpretation depends
on the application, though hypotheses may also be described by symbolic expressions
or even computer programs. The search for an appropriate hypothesis begins with a
population, or collection, of initial hypotheses. Members of the current population
give rise to the next generation population by means of operations such as random
mutation and crossover, which are patterned after processes in biological evolution.
At each step, the hypotheses in the current population are evaluated relative to
a given measure of fitness, with the most fit hypotheses selected probabilistically
as seeds for producing the next generation. Genetic algorithms have been applied
successfully to a variety of learning tasks and to other optimization problems. For
example, they have been used to learn collections of rules for robot control and to
optimize the topology and learning parameters for artificial neural networks. This
chapter covers both genetic algorithms, in which hypotheses are typically described
by bit strings, and genetic programming, in which hypotheses are described by
computer programs.

9.1 MOTIVATION
Genetic algorithms (GAS) provide a learning method motivated by an analogy to
biological evolution. Rather than search from general-to-specific hypotheses, or
from simple-to-complex, GAS generate successor hypotheses by repeatedly mutat-
ing and recombining parts of the best currently known hypotheses. At each step,

a collection of hypotheses called the current population is updated by replacing
some fraction of the population by offspring of the most fit current hypotheses.
The process forms a generate-and-test beam-search of hypotheses, in which vari-
ants of the best current hypotheses are most likely to be considered next. The
popularity of GAS is motivated by a number of factors including:

Evolution is known to be a successful, robust method for adaptation within
biological systems.
GAS can search spaces of hypotheses containing complex interacting parts,
where the impact of each part on overall hypothesis fitness may be difficult
to model.

0 Genetic algorithms are easily parallelized and can take advantage of the
decreasing costs of powerful computer hardware.

This chapter describes the genetic algorithm approach, illustrates its use, and
examines the nature of its hypothesis space search. We also describe a variant
called genetic programming, in which entire computer programs are evolved to
certain fitness criteria. Genetic algorithms and genetic programming are two of
the more popular approaches in a field that is sometimes called evolutionary
computation. In the final section we touch on selected topics in the study of
biological evolution, including the Baldwin effect, which describes an interesting
interplay between the learning capabilities of single individuals and the rate of
evolution of the entire population.

9.2 GENETIC ALGORITHMS -

The problem addressed by GAS is to search a space of candidate hypotheses to
identify the best hypothesis. In GAS the "best hypothesis" is defined as the one
that optimizes a predefined numerical measure for the problem at hand, called the
hypothesis Jitness. For example, if the learning task is the problem of approxi-
mating an unknown function given training examples of its input and output, then
fitness could be defined as the accuracy of the hypothesis over this training data.
If the task is to learn a strategy for playing chess, fitness could be defined as the
number of games won by the individual when playing against other individuals
in the current population.

Although different implementations of genetic algorithms vary in their de-
tails, they typically share the following structure: The algorithm operates by itera-
tively updating a pool of hypotheses, called the population. On each iteration, all
members of the population are evaluated according to the fitness function. A new
population is then generated by probabilistically selecting the most fit individuals
from the current population. Some of these selected individuals are carried forward
into the next generation population intact. Others are used as the basis for creating
new offspring individuals by applying genetic operations such as crossover and
mutation.

Fitness: A function that assigns an evaluation score, given a hypothesis.
Fitnessdhreshold: A threshold specifying the termination criterion.
p: The number of hypotheses to be included in the population.
r: The fraction of the population to be replaced by Crossover at each step.
m: The mutation rate.

Initialize population: P c Generate p hypotheses at random
Evaluate: For each h in P , compute Fitness(h)'
While [max Fitness(h)] < Fitnessdhreshold do

h

Create a new generation, Ps:
1. Select: F'robabilistically select (1 - r)p members of P to add to Ps. The probability Pr(hi) of

selecting hypothesis hi from P is given by

2. Crossover: Probabilistically select pairs of hypotheses from P , according to &(hi) given
above. For each pair, (h l , h2), produce two offspring by applying the Crossover operator.
Add all offspring to P,.

3. Mutate: Choose m percent of the members of P, with uniform probability. For each, invert
one randomly selected bit in its representation.

4. Update: P t P,.
5. Evaluate: for each h in P , compute Fitness(h)
Return the hypothesis from P that has the highest fitness.

TABLE 9.1
A prototypical genetic algorithm. A population containing p hypotheses is maintained. On each itera-
tion, the successor population Ps is formed by probabilistically selecting current hypotheses according
to their fitness and by adding new hypotheses. New hypotheses are created by applying a crossover
operator to pairs of most fit hypotheses and by creating single point mutations in the resulting gener-
ation of hypotheses. This process is iterated until sufficiently fit hypotheses are discovered. Typical
crossover and mutation operators are defined in a subsequent table.

A prototypical genetic algorithm is described in Table 9.1. The inputs to
this algorithm include the fitness function for ranking candidate hypotheses, a
threshold defining an acceptable level of fitness for terminating the algorithm,
the size of the population to be maintained, and parameters that determine how
successor populations are to be generated: the fraction of the population to be
replaced at each generation and the mutation rate.

Notice in this algorithm each iteration through the main loop produces a new
generation of hypotheses based on the current population. First, a certain number
of hypotheses from the current population are selected for inclusion in the next
generation. These are selected probabilistically, where the probability of selecting
hypothesis hi is given by

Thus, the probability that a hypothesis will be selected is proportional to its
own fitness and is inversely proportional to the fitness of the other competing
hypotheses in the current population.

Once these members of the current generation have been selected for inclu-
sion in the next generation population, additional members are generated using a
crossover operation. Crossover, defined in detail in the next section, takes two par-
ent hypotheses from the current generation and creates two offspring hypotheses
by recombining portions of both parents. The parent hypotheses are chosen proba-
bilistically from the current population, again using the probability function given
by Equation (9.1). After new members have been created by this crossover opera-
tion, the new generation population now contains the desired number of members.
At this point, a certain fraction m of these members are chosen at random, and
random mutations all performed to alter these members.

This GA algorithm thus performs a randomized, parallel beam search for
hypotheses that perform well according to the fitness function. In the follow-
ing subsections, we describe in more detail the representation of hypotheses and
genetic operators used in this algorithm.

9.2.1 Representing Hypotheses
Hypotheses in GAS are often represented by bit strings, so that they can be easily
manipulated by genetic operators such as mutation and crossover. The hypotheses
represented by these bit strings can be quite complex. For example, sets of if-then
rules can easily be represented in this way, by choosing an encoding of rules
that allocates specific substrings for each rule precondition and postcondition.
Examples of such rule representations in GA systems are described by Holland
(1986); Grefenstette (1988); and DeJong et al. (1993).

To see how if-then rules can be encoded by bit strings, .first consider how we
might use a bit string to describe a constraint on the value of a single attribute. To
pick an example, consider the attribute Outlook, which can take on any of the three
values Sunny, Overcast, or Rain. One obvious way to represent a constraint on
Outlook is to use a bit string of length three, in which each bit position corresponds
to one of its three possible values. Placing a 1 in some position indicates that the
attribute is allowed to take on the corresponding value. For example, the string 010
represents the constraint that Outlook must take on the second of these values, ,
or Outlook = Overcast. Similarly, the string 011 represents the more general
constraint that allows two possible values, or (Outlook = Overcast v Rain).
Note 11 1 represents the most general possible constraint, indicating that we don't
care which of its possible values the attribute takes on.

Given this method for representing constraints on a single attribute, con-
junctions of constraints on multiple attributes can easily be represented by con-
catenating the corresponding bit strings. For example, consider a second attribute,
Wind, that can take on the value Strong or Weak. A rule precondition such as

(Outlook = Overcast V Rain) A (Wind = Strong)

can then be represented by the following bit string of length five:

Outlook Wind
01 1 10

Rule postconditions (such as PlayTennis = yes) can be represented in a
similar fashion. Thus, an entire rule can be described by concatenating the bit
strings describing the rule preconditions, together with the bit string describing
the rule postcondition. For example, the rule

IF Wind = Strong THEN PlayTennis = yes

would be represented by the string

Outlook Wind PlayTennis
111 10 10

where the first three bits describe the "don't care" constraint on Outlook, the next
two bits describe the constraint on Wind, and the final two bits describe the rule
postcondition (here we assume PlayTennis can take on the values Yes or No).
Note the bit string representing the rule contains a substring for each attribute
in the hypothesis space, even if that attribute is not constrained by the rule pre-
conditions. This yields a fixed length bit-string representation for rules, in which
substrings at specific locations describe constraints on specific attributes. Given
this representation for single rules, we can represent sets of rules by similarly
concatenating the bit string representations of the individual rules.

In designing a bit string encoding for some hypothesis space, it is useful to
arrange for every syntactically legal bit string to represent a well-defined hypoth-
esis. To illustrate, note in the rule encoding in the above paragraph the bit string
11 1 10 11 represents a rule whose postcondition does not constrain the target
attribute PlayTennis. If we wish to avoid considering this hypothesis, we may
employ a different encoding (e.g., allocate just one bit to the PlayTennis post-
condition to indicate whether the value is Yes or No), alter the genetic operators
so that they explicitly avoid constructing such bit strings, or simply assign a very
low fitness to such bit strings.

In some GAS, hypotheses are represented by symbolic descriptions rather
than bit strings. For example, in Section 9.5 we discuss a genetic algorithm that
encodes hypotheses as computer programs.

9.2.2 Genetic Operators
The generation of successors in a GA is determined by a set of operators that
recombine and mutate selected members of the current population. Typical GA
operators for manipulating bit string hypotheses are illustrated in Table 9.1. These
operators correspond to idealized versions of the genetic operations found in bi-
ological evolution. The two most common operators are crossover and mutation.

The crossover operator produces two new offspring from two parent strings,
by copying selected bits from each parent. The bit at position i in each offspring
is copied from the bit at position i in one of the two parents. The choice of which
parent contributes the bit for position i is determined by an additional string called
the crossover mask. To illustrate, consider the single-point crossover operator at
the top of Table 9.2. Consider the topmost of the two offspring in this case. This
offspring takes its first five bits from the first parent and its remaining six bits
from the second parent, because the crossover mask 11 11 1000000 specifies these
choices for each of the bit positions. The second offspring uses the same crossover
mask, but switches the roles of the two parents. Therefore, it contains the bits that
were not used by the first offspring. In single-point crossover, the crossover mask
is always constructed so that it begins with a string containing n contiguous Is,
followed by the necessary number of 0s to complete the string. This results in
offspring in which the first n bits are contributed by one parent and the remaining
bits by the second parent. Each time the single-point crossover operator is applied,

Initial strings Crossover Mask Offspring

Single-point crossover:

Two-point crossover:

Uniform crossover:

Point mutation: lllOloo_1000 111010~1000

TABLE 9.2
Common operators for genetic algorithms. These operators form offspring of hypotheses represented
by bit strings. The crossover operators create two descendants from two parents, using the crossover
mask to determine which parent contributes which bits. Mutation creates a single descendant from a
single parent by changing the value of a randomly chosen bit.

the crossover point n is chosen at random, and the crossover mask is then created
and applied.

In two-point crossover, offspring are created by substituting intermediate
segments of one parent into the middle of the second parent string. Put another
way, the crossover mask is a string beginning with no zeros, followed by a con-
tiguous string of nl ones, followed by the necessary number of zeros to complete
the string. Each time the two-point crossover operator is applied, a mask is gen-
erated by randomly choosing the integers no and nl. For instance, in the example
shown in Table 9.2 the offspring are created using a mask for which no = 2 and
n 1 = 5. Again, the two offspring are created by switching the roles played by the
two parents.

Uniform crossover combines bits sampled uniformly from the two parents,
as illustrated in Table 9.2. In this case the crossover mask is generated as a random
bit string with each bit chosen at random and independent of the others.

In addition to recombination operators that produce offspring by combining
parts of two parents, a second type of operator produces offspring from a single
parent. In particular, the mutation operator produces small random changes to the
bit string by choosing a single bit at random, then changing its value. Mutation is
often performed after crossover has been applied as in our prototypical algorithm
from Table 9.1.

Some GA systems employ additional operators, especially operators that are
specialized to the particular hypothesis representation used by the system. For
example, Grefenstette et al. (1991) describe a system that learns sets of rules
for robot control. It uses mutation and crossover, together with an operator for
specializing rules. Janikow (1993) describes a system that learns sets of rules
using operators that generalize and specialize rules in a variety of directed ways
(e.g., by explicitly replacing the condition on an attribute by "don't care").

9.2.3 Fitness Function and Selection
The fitness function defines the criterion for ranking potential hypotheses and for
probabilistically selecting them for inclusion in the next generation population. If
the task is to learn classification rules, then the fitness function typically has a
component that scores the classification accuracy of the rule over a set of provided
training examples. Often other criteria may be included as well, such as the com-
plexity or generality of the rule. More generally, when the bit-string hypothesis is
interpreted as a complex procedure (e.g., when the bit string represents a collec-
tion of if-then rules that will be chained together to control a robotic device), the
fitness function may measure the overall performance of the resulting procedure
rather than performance of individual rules.

In our prototypical GA shown in Table 9.1, the probability that a hypothesis
will be selected is given by the ratio of its fitness to the fitness of other members
of the current population as seen in Equation (9.1). This method is sometimes
called jitness proportionate selection, or roulette wheel selection. Other methods
for using fitness to select hypotheses have also been proposed. For example, in

256 MACHINE LEARNING
1

tournament selection, two hypotheses are first chosen at random from the current
population. With some predefined probability p the more fit of these two is then
selected, and with probability (1 - p) the less fit hypothesis is selected. Tourna-
ment selection often yields a more diverse population than fitness proportionate
selection (Goldberg and Deb 1991). In another method called rank selection, the
hypotheses in the current population are first sorted by fitness. The probability
that a hypothesis will be selected is then proportional to its rank in this sorted
list, rather than its fitness.

9.3 AN ILLUSTRATIVE EXAMPLE
A genetic algorithm can be viewed as a general optimization method that searches
a large space of candidate objects seeking one that performs best according to the
fitness function. Although not guaranteed to find an optimal object, GAS often
succeed in finding an object with high fitness. GAS have been applied to a number
of optimization problems outside machine learning, including problems such as
circuit layout and job-shop scheduling. Within machine learning, they have been
applied both to function-approximation problems and to tasks such as choosing
the network topology for artificial neural network learning systems.

To illustrate the use of GAS for concept learning, we briefly summarize
the GABIL system described by DeJong et al. (1993). GABIL uses a GA to
learn boolean concepts represented by a disjunctive set of propositional rules.
In experiments over several concept learning problems, GABIL was found to be
roughly comparable in generalization accuracy to other learning algorithms such
as the decision tree learning algorithm C4.5 and the rule learning system AQ14.
The learning tasks in this study included both artificial learning tasks designed to
explore the systems' generalization accuracy and the real world problem of breast
cancer diagnosis.

The algorithm used by GABIL is exactly the algorithm described in Ta-
ble 9.1. In experiments reported by DeJong et al. (1993), the parameter r, which
determines the fraction of the parent population replaced by crossover, was set
to 0.6. The parameter m, which determines the mutation rate, was set to 0.001.
These are typical settings for these parameters. The population size p was varied
from 100 to 1000, depending on the specific learning task.

The specific instantiation of the GA algorithm in GABIL can be summarized
as follows:

0 Representation. Each hypothesis in GABIL corresponds to a disjunctive set
of propositional rules, encoded as described in Section 9.2.1. In particular,
the hypothesis space of rule preconditions consists of a conjunction of con-
straints on a fixed set of attributes, as described in that earlier section. To
represent a set of rules, the bit-string representations of individual rules are
concatenated. To illustrate, consider a hypothesis space in which rule precon-
ditions are conjunctions of constraints over two boolean attributes, a1 and a2.

The rule postcondition is described by a single bit that indicates the predicted

value of the target attribute c. Thus, the hypothesis consisting of the two rules

I F a l = T r \ a z = F THEN c = T ; IF a 2 = T THEN c = F

would be represented by the string

Note the length of the bit string grows with the number of rules in the hy-
pothesis. This variable bit-string length requires a slight modification to the
crossover operator, as described below.

a Genetic operators. GABIL uses the standard mutation operator of Table 9.2,
in which a single bit is chosen at random and replaced by its complement.
The crossover operator that it uses is a fairly standard extension to the
two-point crossover operator described in Table 9.2. In particular, to accom-
modate the variable-length bit strings that encode rule sets, and to constrain
the system so that crossover occurs only between like sections of the bit
strings that encode rules, the following approach is taken. To perform a
crossover operation on two parents, two crossover points are first chosen
at random in the first parent string. Let dl (dz) denote the distance from
the leftmost (rightmost) of these two crossover points to the rule boundary
immediately to its left. The crossover points in the second parent are now
randomly chosen, subject to the constraint that they must have the same dl
and d2 value. For example, if the two parent strings are

and

and the crossover points chosen for the first parent are the points following
bit positions 1 and 8,

where "[" and "1" indicate crossover points, then dl = 1 and dz = 3. Hence
the allowed pairs of crossover points for the second parent include the pairs
of bit positions (1,3), (1,8), and (6,8). If the pair (1,3) happens to be
chosen,

then the two resulting offspring will be

and

As this example illustrates, this crossover operation enables offspring to
contain a different number of rules than their parents, while assuring that all
bit strings generated in this fashion represent well-defined rule sets.
Fitness function. The fitness of each hypothesized rule set is based on its
classification accuracy over the training data. In particular, the function used
to measure fitness is

where correct (h) is the percent of all training examples correctly classified
by hypothesis h.

In experiments comparing the behavior of GABIL to decision tree learning
algorithms such as C4.5 and ID5R, and to the rule learning algorithm AQ14,
DeJong et al. (1993) report roughly comparable performance among these systems,
tested on a variety of learning problems. For example, over a set of 12 synthetic
problems, GABIL achieved an average generalization accuracy of 92.1 %, whereas
the performance of the other systems ranged from 91.2 % to 96.6 %.

9.3.1 Extensions
DeJong et al. (1993) also explore two interesting extensions to the basic design
of GABIL. In one set of experiments they explored the addition of two new ge-
netic operators that were motivated by the generalization operators common in
many symbolic learning methods. The first of these operators, AddAlternative,
generalizes the constraint on a specific attribute by changing a 0 to a 1 in the
substring corresponding to the attribute. For example, if the constraint on an at-
tribute is represented by the string 10010, this operator might change it to 101 10.
This operator was applied with probability .O1 to selected members of the popu-
lation on each generation. The second operator, Dropcondition performs a more
drastic generalization step, by replacing all bits for a particular attribute by a 1.
This operator corresponds to generalizing the rule by completely dropping the
constraint on the attribute, and was applied on each generation with probability
.60. The authors report this revised system achieved an average performance of
95.2% over the above set of synthetic learning tasks, compared to 92.1% for the
basic GA algorithm.

In the above experiment, the two new operators were applied with the same
probability to each hypothesis in the population on each generation. In a second
experiment, the bit-string representation for hypotheses was extended to include
two bits that determine which of these operators may be applied to the hypothesis.
In this extended representation, the bit string for a typical rule set hypothesis
would be

where the final two bits indicate in this case that the AddAlternative operator may
be applied to this bit string, but that the Dropcondition operator may not. These
two new bits define part of the search strategy used by the GA and are themselves
altered and evolved using the same crossover and mutation operators that operate
on other bits in the string. While the authors report mixed results with this approach
(i.e., improved performance on some problems, decreased performance on others),
it provides an interesting illustration of how GAS might in principle be used to
evolve their own hypothesis search methods.

9.4 HYPOTHESIS SPACE SEARCH
As illustrated above, GAS employ a randomized beam search method to seek a
maximally fit hypothesis. This search is quite different from that of other learning
methods we have considered in this book. To contrast the hypothesis space search
of GAS with that of neural network BACKPROPAGATION, for example, the gradient
descent search in BACKPROPAGATION moves smoothly from one hypothesis to a
new hypothesis that is very similar. In contrast, the GA search can move much
more abruptly, replacing a parent hypothesis by an offspring that may be radically
different from the parent. Note the GA search is therefore less likely to fall into
the same kind of local minima that can plague gradient descent methods.

One practical difficulty in some GA applications is the problem of crowding.
Crowding is a phenomenon in which some individual that is more highly fit than
others in the population quickly reproduces, so that copies of this individual and

1 very similar individuals take over a large fraction of the population. The negative
impact of crowding is that it reduces the diversity of the population, thereby slow-
ing further progress by the GA. Several strategies have been explored for reducing
crowding. One approach is to alter the selection function, using criteria such as
tournament selection or rank selection in place of fitness proportionate roulette
wheel selection. A related strategy is "fitness sharing," in which the measured
fitness of an individual is reduced by the presence of other, similar individuals
in the population. A third approach is to restrict the kinds of individuals allowed
to recombine to form offspring. For example, by allowing only the most similar
individuals to recombine, we can encourage the formation of clusters of similar
individuals, or multiple "subspecies" within the population. A related approach is
to spatially distribute individuals and allow only nearby individuals to recombine.
Many of these techniques are inspired by the analogy to biological evolution.

9.4.1 Population Evolution and the Schema Theorem
It is interesting to ask whether one can mathematically characterize the evolution
over time of the population within a GA. The schema theorem of Holland (1975)
provides one such characterization. It is based on the concept of schemas, or pat-
terns that describe sets of bit strings. To be precise, a schema is any string com-
posed of Os, Is, and *'s. Each schema represents the set of bit strings containing the
indicated 0s and Is, with each "*" interpreted as a "don't care." For example, the
schema 0*10 represents the set of bit strings that includes exactly 0010 and 01 10.

An individual bit string can be viewed as a representative of each of the
different schemas that it matches. For example, the bit string 0010 can be thought
of as a representative of 24 distinct schemas including 00**, O* 10, ****, etc. Sim-
ilarly, a population of bit strings can be viewed in terms of the set of schemas that
it represents and the number of individuals associated with each of these schema.

The schema theorem characterizes the evolution of the population within a
GA in terms of the number of instances representing each schema. Let m(s, t)
denote the number of instances of schema s in the population at time t (i.e.,
during the tth generation). The schema theorem describes the expected value of
m(s, t + 1) in terms of m(s, t) and other properties of the schema, population, and
GA algorithm parameters.

The evolution of the population in the GA depends on the selection step,
the recombination step, and the mutation step. Let us start by considering just the
effect of the selection step. Let f (h) denote the fitness of the individual bit string
h and f(t) denote the average fitness of all individuals in the population at time t.
Let n be the total number of individuals in the population. Let h E s n p, indicate
that the individual h is both a representative of schema s and a member of the
population at time t. Finally, let 2(s , t) denote the average fitness of instances of
schema s in the population at time t.

We are interested in calculating the expected value of m(s, t + l), which
we denote E[m(s, t + I)]. We can calculate E[m (s , t + I)] using the probability
distribution for selection given in Equation (9. I), which can be restated using our
current terminology as follows:

Now if we select one member for the new population according to this probability
distribution, then the probability that we will select a representative of schema s is

The second step above follows from the fact that by definition,

Equation (9.2) gives the probability that a single hypothesis selected by the G A
will be an instance of schema s . Therefore, the expected number of instances
of s resulting from the n independent selection steps that create the entire new
generation is just n times this probability.

Equation (9.3) states that the expected number of instances of schema s at gener-
ation t + 1 is proportional to the average fitness i (s , t) of instances of this schema
at time t , and inversely proportional to the average fitness f (t) of all members
of the population at time t. Thus, we can expect schemas with above average fit-
ness to be represented with increasing frequency on successive generations. If we
view the G A as performing a virtual parallel search through the space of possible
schemas at the same time it performs its explicit parallel search through the space
of individuals, then Equation (9.3) indicates that more fit schemas will grow in
influence over time.

While the above analysis considered only the selection step of the GA, the
crossover and mutation steps must be considered as well. The schema theorem con-
siders only the possible negative influence of these genetic operators (e.g., random
mutation may decrease the number of representatives of s , independent of O(s, t)) ,
and considers only the case of single-point crossover. The full schema theorem
thus provides a lower bound on the expected frequency of schema s , as follows:

Here, p, is the probability that the single-point crossover operator will be applied
to an arbitrary individual, and p, is the probability that an arbitrary bit of an
arbitrary individual will be mutated by the mutation operator. o(s) is the number

I of defined bits in schema s , where 0 and 1 are defined bits, but * is not. d(s) is
the distance between the leftmost and rightmost defined bits in s . Finally, 1 is the
length of the individual bit strings in the population. Notice the leftmost term in
Equation (9.4) is identical to the term from Equation (9.3) and describes the ef-
fect of the selection step. The middle term describes the effect of the single-point
crossover operator-in particular, it describes the probability that an arbitrary in-
dividual representing s will still represent s following application of this crossover
operator. The rightmost term describes the probability that an arbitrary individual
representing schema s will still represent schema s following application of the
mutation operator. Note that the effects of single-point crossover and mutation
increase with the number of defined bits o(s) in the schema and with the distance
d(s) between the defined bits. Thus, the schema theorem can be roughly interpreted
as stating that more fit schemas will tend to grow in influence, especially schemas

containing a small number of defined bits (i.e., containing a large number of *'s),
and especially when these defined bits are near one another within the bit string.

The schema theorem is perhaps the most widely cited characterization of
population evolution within a GA. One way in which it is incomplete is that it fails
to consider the (presumably) positive effects of crossover and mutation. Numerous
more recent theoretical analyses have been proposed, including analyses based on
Markov chain models and on statistical mechanics models. See, for example,
Whitley and Vose (1995) and Mitchell (1996).

9.5 GENETIC PROGRAMMING
Genetic programming (GP) is a form of evolutionary computation in which the in-
dividuals in the evolving population are computer programs rather than bit strings.
Koza (1992) describes the basic genetic programming approach and presents a
broad range of simple programs that can be successfully learned by GP.

9.5.1 Representing Programs
Programs manipulated by a GP are typically represented by trees correspond-
ing to the parse tree of the program. Each function call is represented by a
node in the tree, and the arguments to the function are given by its descendant
nodes. For example, Figure 9.1 illustrates this tree representation for the function
sin(x) + J-. To apply genetic programming to a particular domain, the user
must define the primitive functions to be considered (e.g., sin, cos, J, +, -, ex-
ponential~), as well as the terminals (e.g., x, y , constants such as 2). The genetic
programming algorithm then uses an evolutionary search to explore the vast space
of programs that can be described using these primitives.

As in a genetic algorithm, the prototypical genetic programming algorithm
maintains a population of individuals (in this case, program trees). On each it-
eration, it produces a new generation of individuals using selection, crossover,
and mutation. The fitness of a given individual program in the population is typ-
ically determined by executing the program on a set of training data. Crossover
operations are performed by replacing a randomly chosen subtree of one parent

FIGURE 9.1
Program tree representation in genetic programming.
Arbitrary programs are represented by their parse trees.

FIGURE 9.2
Crossover operation applied to two parent program trees (top). Crossover points (nodes shown in
bold at top) are chosen at random. The subtrees rooted at these crossover points are then exchanged
to create children trees (bottom).

program by a subtree from the other parent program. Figure 9.2 illustrates a typical
crossover operation.

Koza (1992) describes a set of experiments applying a GP to a number of
applications. In his experiments, 10% of the current population, selected prob-
abilistically according to fitness, is retained unchanged in the next generation.
The remainder of the new generation is created by applying crossover to pairs
of programs from the current generation, again selected probabilistically accord-
ing to their fitness. The mutation operator was not used in this particular set of
experiments.

9.5.2 Illustrative Example
One illustrative example presented by Koza (1992) involves learning an algorithm
for stacking the blocks shown in Figure 9.3. The task is to develop a general algo-
rithm for stacking the blocks into a single stack that spells the word "universal,"

FIGURE 9.3
A block-stacking problem. The task for GP is to discover a program that can transform an arbitrary
initial configuration of blocks into a stack that spells the word "universal." A set of 166 such initial
configurations was provided to evaluate fitness of candidate programs (after Koza 1992).

independent of the initial configuration of blocks in the world. The actions avail-
able for manipulating blocks allow moving only a single block at a time. In
particular, the top block on the stack can be moved to the table surface, or a
block on the table surface can be moved to the top of the stack.

As in most GP applications, the choice of problem representation has a
significant impact on the ease of solving the problem. In Koza's formulation, the
primitive functions used to compose programs for this task include the following
three terminal arguments:

0 CS (current stack), which refers to the name of the top block on the stack,
or F if there is no current stack.
TB (top correct block), which refers to the name of the topmost block on
the stack, such that it and those blocks beneath it are in the correct order.

0 NN (next necessary), which refers to the name of the next block needed
above TB in the stack, in order to spell the word "universal," or F if no
more blocks are needed.

As can be seen, this particular choice of terminal arguments provides a natu-
ral representation for describing programs for manipulating blocks for this task.
Imagine, in contrast, the relative difficulty of the task if we were to instead define
the terminal arguments to be the x and y coordinates of each block.

In addition to these terminal arguments, the program language in this appli-
cation included the following primitive functions:

(MS x) (move to stack), if block x is on the table, this operator moves x to
the top of the stack and returns the value T. Otherwise, it does nothing and
returns the value F.

0 (MT x) (move to table), if block x is somewhere in the stack, this moves the
block at the top of the stack to the table and returns the value T. Otherwise,
it returns the value F.

0 (EQ x y) (equal), which returns T if x equals y , and returns F otherwise.
0 (NOT x), which returns T if x = F, and returns F if x = T.

0 (DU x y) (do until), which executes the expression x repeatedly until ex-
pression y returns the value T.

To allow the system to evaluate the fitness of any given program, Koza
provided a set of 166 training example problems representing a broad variety of
initial block configurations, including problems of differing degrees of difficulty.
The fitness of any given program was taken to be the number of these examples
solved by the algorithm. The population was initialized to a set of 300 random
programs. After 10 generations, the system discovered the following program,
which solves all 166 problems.

(EQ (DU (MT CS)(NOT CS)) (DU (MS NN)(NOT NN)))

Notice this program contains a sequence of two DU, or "Do Until" state-
ments. The first repeatedly moves the current top of the stack onto the table, until
the stack becomes empty. The second "Do Until" statement then repeatedly moves
the next necessary block from the table onto the stack. The role played by the
top level EQ expression here is to provide a syntactically legal way to sequence
these two "Do Until" loops.

Somewhat surprisingly, after only a few generations, this GP was able to
discover a program that solves all 166 training problems. Of course the ability
of the system to accomplish this depends strongly on the primitive arguments
and functions provided, and on the set of training example cases used to evaluate
fitness.

9.5.3 Remarks on Genetic Programming
As illustrated in the above example, genetic programming extends genetic algo-
rithms to the evolution of complete computer programs. Despite the huge size of
the hypothesis space it must search, genetic programming has been demonstrated
to produce intriguing results in a number of applications. A comparison of GP
to other methods for searching through the space of computer programs, such as
hillclimbing and simulated annealing, is given by O'Reilly and Oppacher (1994).

While the above example of GP search is fairly simple, Koza et al. (1996)
summarize the use of a GP in several more complex tasks such as designing
electronic filter circuits and classifying segments of protein molecules. The fil-
ter circuit design problem provides an example of a considerably more complex
problem. Here, programs are evolved that transform a simple fixed seed circuit
into a final circuit design. The primitive functions used by the GP to construct its
programs are functions that edit the seed circuit by inserting or deleting circuit
components and wiring connections. The fitness of each program is calculated
by simulating the circuit it outputs (using the SPICE circuit simulator) to de-
termine how closely this circuit meets the design specifications for the desired
filter. More precisely, the fitness score is the sum of the magnitudes of errors
between the desired and actual circuit output at 101 different input frequen-
cies. In this case, a population of size 640,000 was maintained, with selection

producing 10% of the successor population, crossover producing 89%, and mu-
tation producing 1%. The system was executed on a 64-node parallel proces-
sor. Within the first randomly generated population, the circuits produced were
so unreasonable that the SPICE simulator could not even simulate the behav-
ior of 98% of the circuits. The percentage of unsimulatable circuits dropped to
84.9% following the first generation, to 75.0% following the second generation,
and to an average of 9.6% over succeeding generations. The fitness score of the
best circuit in the initial population was 159, compared to a score of 39 after
20 generations and a score of 0.8 after 137 generations. The best circuit, pro-
duced after 137 generations, exhibited performance very similar to the desired
behavior.

In most cases, the performance of genetic programming depends crucially
on the choice of representation and on the choice of fitness function. For this
reason, an active area of current research is aimed at the automatic discovery
and incorporation of subroutines that improve on the original set of primitive
functions, thereby allowing the system to dynamically alter the primitives from
which it constructs individuals. See, for example, Koza (1994).

9.6 MODELS OF EVOLUTION AND LEARNING
In many natural systems, individual organisms learn to adapt significantly during
their lifetime. At the same time, biological and social processes allow their species
to adapt over a time frame of many generations. One interesting question regarding
evolutionary systems is "What is the relationship between learning during the
lifetime of a single individual, and the longer time frame species-level learning
afforded by evolution?'

9.6.1 Lamarckian Evolution
Larnarck was a scientist who, in the late nineteenth century, proposed that evo-
lution over many generations was directly influenced by the experiences of indi-
vidual organisms during their lifetime. In particular, he proposed that experiences
of a single organism directly affected the genetic makeup of their offspring: If
an individual learned during its lifetime to avoid some toxic food, it could pass
this trait on genetically to its offspring, which therefore would not need to learn
the trait. This is an attractive conjecture, because it would presumably allow for
more efficient evolutionary progress than a generate-and-test process (like that of
GAS and GPs) that ignores the experience gained during an individual's lifetime.
Despite the attractiveness of this theory, current scientific evidence overwhelm-
ingly contradicts Lamarck's model. The currently accepted view is that the genetic
makeup of an individual is, in fact, unaffected by the lifetime experience of one's
biological parents. Despite this apparent biological fact, recent computer studies
have shown that Lamarckian processes can sometimes improve the effectiveness
of computerized genetic algorithms (see Grefenstette 1991; Ackley and Littman
1994; and Hart and Belew 1995).

9.6.2 Baldwin Effect
Although Lamarckian evolution is not an accepted model of biological evolution,
other mechanisms have been suggested by which individual learning can alter
the course of evolution. One such mechanism is called the Baldwin effect, after
J. M. Baldwin (1896), who first suggested the idea. The Baldwin effect is based
on the following observations:

0 If a species is evolving in a changing environment, there will be evolution-
ary pressure to favor individuals with the capability to learn during their
lifetime. For example, if a new predator appears in the environment, then
individuals capable of learning to avoid the predator will be more successful
than individuals who cannot learn. In effect, the ability to learn allows an
individual to perform a small local search during its lifetime to maximize its
fitness. In contrast, nonlearning individuals whose fitness is fully determined
by their genetic makeup will operate at a relative disadvantage.

0 Those individuals who are able to learn many traits will rely less strongly
on their genetic code to "hard-wire" traits. As a result, these individuals
can support a more diverse gene pool, relying on individual learning to
overcome the "missing" or "not quite optimized" traits in the genetic code.
This more diverse gene pool can, in turn, support more rapid evolutionary
adaptation. Thus, the ability of individuals to learn can have an indirect
accelerating effect on the rate of evolutionary adaptation for the entire pop-
ulation.

To illustrate, imagine some new change in the environment of some species,
such as a new predator. Such a change will selectively favor individuals capa-
ble of learning to avoid the predator. As the proportion of such self-improving
individuals in the population grows, the population will be able to support a
more diverse gene pool, allowing evolutionary processes (even non-Lamarckian
generate-and-test processes) to adapt more rapidly. This accelerated adaptation
may in turn enable standard evolutionary processes to more quickly evolve a
genetic (nonlearned) trait to avoid the predator (e.g., an instinctive fear of this
animal). Thus, the Baldwin effect provides an indirect mechanism for individ-
ual learning to positively impact the rate of evolutionary progress. By increas-
ing survivability and genetic diversity of the species, individual learning sup-
ports more rapid evolutionary progress, thereby increasing the chance that the
species will evolve genetic, nonlearned traits that better fit the new environ-
ment.

There have been several attempts to develop computational models to study
the Baldwin effect. For example, Hinton and Nowlan (1987) experimented with
evolving a population of simple neural networks, in which some network weights
were fixed during the individual network "lifetime," while others were trainable.
The genetic makeup of the individual determined which weights were train-
able and which were fixed. In their experiments, when no individual learning

268 MACHINE LEARNING

was allowed, the population failed to improve its fitness over time. However,
when individual learning was allowed, the population quickly improved its fit-
ness. During early generations of evolution the population contained a greater
proportion of individuals with many trainable weights. However, as evolution
proceeded, the number of fixed, correct network weights tended to increase, as
the population evolved toward genetically given weight values and toward less
dependence on individual learning of weights. Additional computational stud-
ies of the Baldwin effect have been reported by Belew (1990), Harvey (1993),
and French and Messinger (1994). An excellent overview of this topic can be
found in Mitchell (1996). A special issue of the journal Evolutionary Computa-
tion on this topic (Turney et al. 1997) contains several articles on the Baldwin
effect.

9.7 PARALLELIZING GENETIC ALGORITHMS
GAS are naturally suited to parallel implementation, and a number of approaches
to parallelization have been explored. Coarse grain approaches to paralleliza-
tion subdivide the population into somewhat distinct groups of individuals, called
demes. Each deme is assigned to a different computational node, and a standard
GA search is performed at each node. Communication and cross-fertilization be-
tween demes occurs on a less frequent basis than within demes. Transfer between
demes occurs by a migration process, in which individuals from one deme are
copied or transferred to other demes. This process is modeled after the kind of
cross-fertilization that might occur between physically separated subpopulations
of biological species. One benefit of such approaches is that it reduces the crowd-
ing problem often encountered in nonparallel GAS, in which the system falls into
a local optimum due to the early appearance of a genotype that comes to dominate
the entire population. Examples of coarse-grained parallel GAS are described by
Tanese (1989) and by Cohoon et al. (1987).

In contrast to coarse-grained parallel implementations of GAS, fine-grained
implementations typically assign one processor per individual in the population.
Recombination then takes place among neighboring individuals. Several differ-
ent types of neighborhoods have been proposed, ranging from planar grid to
torus. Examples of such systems are described by Spiessens and Manderick
(1991). An edited collection of papers on parallel GAS is available in Stender
(1993).

9.8 SUMMARY AND FURTHER READING
The main points of this chapter include:

0 Genetic algorithms (GAS) conduct a randomized, parallel, hill-climbing
search for hypotheses that optimize a predefined fitness function.

0 The search performed by GAS is based on an analogy to biological evolu-
tion. A diverse population of competing hypotheses is maintained. At each

iteration, the most fit members of the population are selected to produce new
offspring that replace the least fit members of the population. Hypotheses
are often encoded by strings that are combined by crossover operations, and .
subjected to random mutations.

a GAS illustrate how learning can be viewed as a special case of optimization.
In particular, the learning task is to find the optimal hypothesis, according to
the predefined fitness function. This suggests that other optimization tech-
niques such as simulated annealing can also be applied to machine learning
problems.

a GAS have most commonly been applied to optimization problems outside
machine learning, such as design optimization problems. When applied to
learning tasks, GAS are especially suited to tasks in which hypotheses are
complex (e.g., sets of rules for robot control, or computer programs), and
in which the objective to be optimized may be an indirect function of
the hypothesis (e.g., that the set of acquired rules successfully controls a
robot).

0 Genetic programming is a variant of genetic algorithms in which the hy-
potheses being manipulated are computer programs rather than bit strings.
Operations such as crossover and mutation are generalized to apply to pro-
grams rather than bit strings. Genetic programming has been demonstrated
to learn programs for tasks such as simulated robot control (Koza 1992) and
recognizing objects in visual scenes (Teller and Veloso 1994).

Evolution-based computational approaches have been explored since the
early days of computer science (e.g., Box 1957 and Bledsoe 1961). Several
different evolutionary approaches were introduced during the 1960s and have
been further explored since that time. Evolution strategies, developed by Rechen-
berg (1965, 1973) to optimize numerical parameters in engineering design, were
followed up by Schwefel (1975, 1977, 1995) and others. Evolutionary program-
ming, developed by Folgel, Owens, and Walsh (1966) as a method for evolv-
ing finite-state machines, was followed up by numerous researchers (e.g.,
Fogel and Atmar 1993). Genetic algorithms, introduced by Holland (1962, 1975)
included the notion of maintaining a large population of individuals and em-
phasized crossover as a key operation in such systems. Genetic programming,
introduced by Koza (1992), applies the search strategy of genetic algorithms to
hypotheses consisting of computer programs. As computer hardware continues to
become faster and less expensive, interest in evolutionary approaches continues
to grow.

One approach to using GAS to learn sets of rules was developed by
K. DeJong and his students at the University of Pittsburgh (e.g., Smith 1980).
In this approach, each rule set is one member in the population of competing
hypotheses, as in the GABIL system discussed in this chapter. A somewhat dif-
ferent approach was developed at University of Michigan by Holland and his
students (Holland 1986), in which each rule is a member of the population, and

the population itself is the rule set. A biological perspective on the roles of muta-
tion, inbreeding, cross-breeding, and selection in evolution is provided by Wright
(1977).

Mitchell (1996) and Goldberg (1989) are two textbooks devoted to the sub-
ject of genetic algorithms. Forrest (1993) provides an overview of the technical
issues in GAS, and Goldberg (1994) provides an overview of several recent ap-
plications. Koza's (1992) monograph on genetic programming is the standard
reference for this extension of genetic algorithms to manipulation of computer
programs. The primary conference in which new results are published is the In-
ternational Conference on Genetic Algorithms. Other relevant conferences include
the Conference on Simulation of Adaptive Behavior, the International Confer-
ence on Artijicial Neural Networks and Genetic Algorithms, and the IEEE In-
ternational Conference on Evolutionary Computation. An annual conference is
now held on genetic programming, as well (Koza et al. 1996b). The Evolution-
ary Computation Journal is one source of recent research results in the field.
Several special issues of the journal Machine Learning have also been devoted
to GAS.

EXERCISES
9.1. Design a genetic algorithm to learn conjunctive classification rules for the Play-

Tennis problem described in Chapter 3. Describe precisely the bit-string encoding
of hypotheses and a set of crossover operators.

9.2. Implement a simple GA for Exercise 9.1. Experiment with varying population size p,
the fraction r of the population replaced at each generation, and the mutation rate m.

9.3. Represent the program discovered by the GP (described in Section 9.5.2) as a tree.
Illustrate the operation of the GP crossover operator by applying it using two copies
of your tree as the two parents.

9.4. Consider applying GAS to the task of finding an appropriate set of weights for
an artificial neural network (in particular, a feedforward network identical to those
trained by BACKPROPAGATION (Chapter 4)). Consider a 3 x 2 x 1 layered, feedfor-
ward network. Describe an encoding of network weights as a bit string, and describe
an appropriate set of crossover operators. Hint: Do not allow all possible crossover
operations on bit strings. State one advantage and one disadvantage of using GAS
in contrast to BACKPROPAGATION to train network weights.

REFERENCES
Ackley, D., & Littman, M. (1994). A case for Lamarckian evolution. In C. Langton (Ed.), Am$cial

life III. Reading, MA: Addison Wesley.
Back, T. (1996). Evolutionary algorithms in theory andpractice. Oxford, England: Oxford University

Press.
Baldwin, J. M. (1896). A new factor in evolution. American Naturalist, 3, 441-451, 536-553.

ht tp: / /www.santafe . edu/s f i /publ i ca t ions /B
Belew, R. (1990). Evolution, learning, and culture: Computational metaphors for adaptive algorithms.

Complex Systems, 4, 11-49.

Belew, R. K., & Mitchell, M. (Eds.). (1996). Adaptive individuals in evolving populations: Models
and algorithms. Reading, MA: Addison-Wesley.

Bledsoe, W. (1961). The use of biological concepts in the analytical study of systems. Proceedings
of the ORSA-TIMS National Meeting, San Francisco.

Booker, L. B., Goldberg, D. E., & Holland, J. H. (1989). Classifier systems and genetic algorithms.
Artificial Intelligence, 40, 235-282.

Box, G. (1957). Evolutionary operation: A method for increasing industrial productivity. Jountal of
the Royal Statistical Society, 6(2), 81-101.

Cohoon, J. P., Hegde, S. U., Martin, W. N., & Richards, D. (1987). Punctuated equilibria: A parallel
genetic algorithm. Proceedings of the Second International Conference on Genetic Algorithms
(pp. 148-154).

DeJong, K. A. (1975). An analysis of behavior of a class of genetic adaptive systems (Ph.D. disser-
tation). University of Michigan.

DeJong, K. A., Spears, W. M., & Gordon, D. F. (1993). Using genetic algorithms for concept learning.
Machine Learning, 13, 161-188.

Folgel, L. J., Owens, A. J., & Walsh, M. J. (1966). Artificial intelligence through simulated evolution.
New York: John Wiley & Sons.

Fogel, L. J., & Atmar, W. (Eds.). (1993). Proceedings of the Second Annual Conference on Evolu-
tionary Programming. Evolutionary Programming Society.

Forrest, S. (1993). Genetic algorithms: Principles of natural selection applied to computation. Science,
261, 872-878.

French, R., & Messinger A. (1994). Genes, phenes, and the Baldwin effect: Learning and evolution
in a simulated population. In R. Brooks and P. Maes (Eds.), ArtiJicial Life IV. Cambridge,
MA: MIT Press.

Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading,
MA: Addison-Wesley.

Goldberg, D. (1994). Genetic and evolutionary algorithms come of age. Communications of the ACM,
37(3), 113-1 19.

Green, D. P., & Smith, S. F. (1993). Competition based induction of decision models from examples.
Machine Learning, 13,229-257.

Grefenstette, J. J. (1988). Credit assignment in rule discovery systems based on genetic algorithms.
Machine Learning, 3, 225-245.

Grefenstette, J. J. (1991). Lamarckian learning in multi-agent environments. In R. Belew and L.
Booker (Eds.), Proceedings of the Fourth International Conference on Genetic Algorithms.
San Mateo, CA: Morgan Kaufmann.

Hart, W., & Belew, R. (1995). Optimization with genetic algorithm hybrids that use local search. In
R. Below and M. Mitchell (Eds.), Adaptive individuals in evolving populations: Models and
algorithms. Reading, M A : Addison-Wesley.

Harvey, I. (1993). The puzzle of the persistent question marks: A case study of genetic drift. In
Forrest (Ed.), Proceedings of the Fzfth International Conference on Genetic Algorithms. San
Mateo, CA: Morgan Kaufmann.

Hinton, G. &, & Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems, 1,
495-502.

Holland, J. H. (1962). Outline for a logical theory of adaptive systems. Journal of the Association
for Computing Machinery, 3, 297-314.

Holland, J. H. (1975). Adaptation in natural and art$cial systems. University of Michigan Press
(reprinted in 1992 by MIT Press, Cambridge, MA).

Holland, J. H. (1986). Escaping brittleness: The possibilities of general-purpose learning algorithms
applied to parallel rule-based systems. In R. Michalski, J. Carbonell, & T. Mitchell (Eds.),
Machine learning: An artijicial intelligence approach (Vol. 2). San Mateo, CA: Morgan Kauf-
mann.

Holland, J. H. (1989). Searching nonlinear functions for high values. Applied Mathematics and Com-
putation, 32, 255-274.

Janikow, C. Z. (1993). A knowledge-intensive GA for supervised learning. Machine Learning, 13,
189-228.

Koza, J. (1992). Genetic programming: On the programming of computers by means of natural se-
lection. Cambridge, MA: MIT Press.

Koza, J. R. (1994). Genetic Programming 11: Automatic discovery of reusable programs. Cambridge,
MA: The MIT Press.

Koza, J. R., Bennett 111, F. H., Andre, D., & Keane, M. A. (1996). Four problems for which a
computer program evolved by genetic programming is competitive with human performance.
Proceedings of the 1996 IEEE International Conference on Evolutionary Computation (pp.
1-10). IEEE Press.

Koza, J. R., Goldberg, D. E., Fogel, D. B., & Riolo, R. L. (Eds.). (1996b). Genetic programming
19%: Proceedings of the First Annual Conference. Cambridge, MA: MIT Press.

Machine Learning: Special Issue on Genetic Algorithms (1988) 3:2-3, October.
Machine Learning: Special Issue on Genetic Algorithms (1990) 5:4, October.
Machine karning: Special Issue on Genetic Algorithms (1 993) l3:2,3, November.
Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, MA: MIT Press.
O'Reilly, U-M., & Oppacher, R. (1994). Program search with a hierarchical variable length repre-

sentation: Genetic programming, simulated annealing, and hill climbing. In Y. Davidor et al.
(Eds.), Parallel problem solving from nature-PPSN I11 (Vol. 866) (Lecture notes in computer
science). Springer-Verlag.

Rechenberg, I. (1965). Cybernetic solution path of an experimental problem. Ministry of aviation,
Royal Aircraft Establishment, U.K.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der
biolgischen evolution. Stuttgart: Frommann-Holzboog.

Schwefel, H. P. (1975). Evolutionsstrategie und numerische optimiemng (Ph.D. thesis). Technical
University of Berlin.

Schwefel, H. P. (1977). Numerische optimierung von computer-modellen mittels der evolutionsstrate-
gie. Basel: Birkhauser.

Schwefel, H. P. (1995). Evolution and optimum seeking. New York: John Wiley & Sons.
Spiessens, P., & Manderick, B. (1991). A massively parallel genetic algorithm: Implementation and

first analysis. Proceedings of the 4th International Conference on Genetic Algorithms (pp.
279-286).

Smith, S. (1980). A learning system based on genetic adaptive algorithms (Ph.D. dissertation). Com-
puter Science, University of Pittsburgh.

Stender, J. (Ed.) (1993). Parallel genetic algorithms. Amsterdam: IOS Publishing.
Tanese, R. (1989). Distributed genetic algorithms. Proceedings of the 3rd International Conference

on Genetic Algorithms (pp. 434-439).
Teller, A., & Veloso, M. (1994). PADO: A new learning architecture for object recognition. In K.

Ikeuchi & M. Veloso (Eds.), Symbolic visual learning @p. 81-116). Oxford, England: Oxford
Univ. Press.

Turney, P. D. (1995). Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision
tree induction algorithm. Journal of Al Research, 2, 369-409. http://www.cs.washington.edu/
research/jair/home.htmI.

Tumey, P. D., Whitley, D., & Anderson, R. (1997). Evolutionary Computation. Special issue:
The Baldwin effect, 4(3). Cambridge, MA: MIT Press. http://www-mitpress.mit.eduljmls-
catalog/evolution-abstracts/evol.html.

Whitley, L. D., & Vose, M. D. (Eds.). (1995). Foundations of genetic algorithms 3. Morgan Kauf-
mann.

Wright, S. (1977). Evolution and the genetics of populations. Vol. 4: Variability within and among
Natural Populations. Chicago: University of Chicago Press.

Zbignlew, M. (1992). Genetic algorithms + data structures = evolution programs. Berlin: Springer-
Verlag.

